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A TECHNIQUE FOR PASSIVE ATTITUDE CONTROL OF SOLAR
ORIENTED INTERPLANETARY SPACECRAFT

By Vernon K. Merrick, Francis J. Moran,
and Bruce E. Tinling

Ames Research Center
SUMMARY

Solar pressure forces can provide restoring torques that aline a
specified axis of a suitably shaped spacecraft toward the sun. Implementing
a control system that employs these torques requires a means of damping oscil-
latory motion of the solar pointing axis. This paper examines a passive tech-
nigque of damping by dissipating the energy of relative motion between a pair
of connected bodies. Two systems are studied in which the relative motion
occurs about a single hinge. Coupling between the attitude motions is caused
by unequal rates of change of solar pressure torque with each independent
attitude angle. The performance is compared with that of a third system that
uses a two-degrees-of-freedom hinge and has no coupling between the attitude
motions.

INTRODUCTION

Solar radiation exerts a pressure which can cause torques large enough to
be an important consideration in the attitude control of spacecraft, partic-
ularly when the spacecraft mission is of long duration. In most instances
solar torques cause undesirable disturbances that must be countered by the
control system. However, for spacecraft required to point continuously toward
the sun, solar torques can be an asset 1f the spacecraft is shaped so that the
desired attitude orientation is also one of stable equilibrium with respect to
the solar torgues. Both passive and semipassive control systems that rely on
this principle have been proposed (refs. 1, 2, and 3).

Attitude control systems that exploit solar pressure torques differ
primarily in the technique used to damp the attitude motions. In some, the
damping may be active, as in the control system for the Mariner spacecraft
(ref. 4). In others, the damping may be passive, requiring no sensors, actu-
ators, or additional energy sources. An example of a system of this latter
type is described in reference 3 where a structural element provides the phase
shift between the solar restoring torque and attitude motion necessary to damp
the attitude motions.

An alternate passive technique for solar oriented attitude control
systems is proposed in reference 5. This scheme aims to remove any unwanted
mechanical energy, resulting from external disturbances, by connecting to the
spacecraft, through dampers, one or more suxiliary bodies. If the



configuration of these auxiliary bodies is correct, any attitude motion will
cause relative motion between the spacecraft and auxiliary bodies, and the
energy contained in this relative motion will be absorbed by the dampers.
Mechanical simplicity suggests the desirability of using a single auxiliary
body with a single degree of freedom relative to the spacecraft. To achieve
this simplicity 1t is necessary to promote coupling between the degrees of
freedom of the entire system so that any attitude error will cause relative
motion between the two bodies. Two techniques of coupling the modes of motion
are possible. One is to distribute the mass asymmetrically in either or both
bodies. The performance of a solar oriented spacecraft utilizing this tech-
nigue has been examined and reported in reference 5. The other technique is
to create unequal rates of change of solar torque with each independent atti-
tude angle by means of suitably shaped illuminated surfaces of either or both
bodies. Any attitude deviation of either body then produces a solar torque
that causes relative motion between the two bodies. This technique is demon-
strated in this report by an analysis and comparison of two possible single-
hinge configurations, both exhibiting "torgue coupling."

The performance of this type of solar oriented spacecraft probably can
be improved by increasing the number of bodies or the number of degrees of
freedom between the bodies. The price for the improved performance is addi-
tional mechanical complication. To illustrate the magnitude of the perfor-
mance gains obtainable in this manner, a third system consisting of a single
auxiliary body having two degrees of freedom relative to the main spacecraft
body is analyzed. This system is made as simple as possible by arranging for
both bodies to have symmetrical mass distributions and solar reflecting sur-
faces relative to the sun line and two hinges orthogonal to each other and to
the sun line. The attitude motions of such a system must be uncoupled.

The study is restricted to heliocentric orbits wherein the natural
frequency of oscillation of the spacecraft is large compared with the orbital
frequency. This implies that the torques due to the gravity gradient of the
sun and the gyroscopic effect of the curvature of the orbital path are negli-
gible compared to those derived from the solar pressure. It follows that
solar stabilization can only be achieved about two axes normal to the sun line.
It is assumed that the spacecraft is stabilized to prevent rotation about the

sun line by other means.
NOTATION

Coordinate Systems

E.(j = 1,2,3) unit vectors of the wvehicle hinge coordinate system defining
J a reference frame fixed in the main satellite body and
derived from the V.(j = 1,2,3) reference frame by rotation

about Vs through the hinge angle ¥ (The hinge axis is
Tz.)
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= 1,2,3) unit vectors of the damper coordinate system along principal
axes of the damper body (In the undisturbed steady state
dj =V, (J = 1,2,3)

5.(j = 1,2,3) unit vectors of the orbital coordinate system defining a
J right-hand orthogonal reference frame fixed in the
satellite orbit such that ©s is directed toward the sun
(Orientation of the reference frame about 0z is
arbitrary.)
v.(j = 1,2,3) unit vectors of the vehicle coordinate system defining the
J torque decoupling and principal axes of_the main satellite
body (In the undisturbed steady state Vs =0y (J = 1,2,3).)
Symbols
. . . D Vi
B dimensionless damping constant, T [x
da Vi
c dimensionless spring constant, < ;> <§ i)
D viscous damping constant of angular rate damper located on
cs axis
Iv (j = 1,2,3) principal moments of inertia of main satellite body
J
K spring constant of spring restraining rotation of damper
body relative to main body about T, axis
Kd s Kd solar spring rates of damper body about El and aé axes,
= 2 respectively
K, s K solar spring rates of main body about vy and vo axes,
1 2 respectively
<#€ Ly
L undamped natural frequency parameter i>
Kvl d.
S Laplace transform variable expressed in dimensionless time
st Laplace transform variable expressed in real time
t real time
T4e external torque acting on damper about its hinge



Tje(j = 112:3)
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external torques, other than solar torques, acting on
complete satellite

vector rotation of damper body with respect to inertial
space

vector rotation of main body with respect to inertial
space

hinge angle (See definition of Ej)

imaginary part of a root of the characteristic equation
small rotation angle of damper about ©¢T- axis

vector rotation of damper body with respect to main body

real part of a root of the characteristic equation

. . . 1
dimensionless time, t© T
Vi

small rotation angles about V,, Ve, and va relating the

vj frame to the Bj frame

Subscripts

quantity measured with respect to the c or h frame,
respectively

damper body

gquantity measured with respect to the dj frame
solar torques

main body

quantity measured with respect to the Vj frame

Double Subscripts

variable used in describing relationships between the

v. Zframe and Cj frame, etc. For example MVC

is direction cosihne matrix relating the v frame
relative to the ¢ frame



SCOPE OF ANALYSIS

The analytical technique adopted is aimed at establishing the broad
feasibility of this type of system and at comparing the performance of three
configurations. Unlike the performance of many spacecraft control systems,
the steady-state performance of those considered here is not dependent on any
presently well-defined external disturbances. Apart from the meteorite prob-
lem, possibly the most significant limitation on steady-state pointing accu-
racy is the inhomogeneity of surface solar reflection properties due to
nonuniform aging, and inaccuracies in the torque-free, steady-state alinement
of the two bodies due to manufacturing errors. Since these considerations are
not strongly related to the problem of selecting fundamental parameters, the
question of steady-state performance is not treated in this report.

The remaining significant control system performance criterion is the
damping time, which dictates how long it takes the system to reach the steady
state after injection or after some subsequent disturbance. Consideration of
the demping time goes far toward establishing the bounds on many of the impor-
tant design parameters for this type of system. As in reference 5, the analy-
sis is based on the linear autonomous equations approximating the system
behavior. The damping criterion is the damping of the least damped mode of
motion, which, in this case, is characterized by the maximum real part of the
roots of the characteristic polynomial. Minimizing this quantity is then
equivalent to insuring that any arbitrary attitude disturbance decays at the
maximuim rate. For the coupled configurations, this minimization is accom-
plished by the steepest ascent computational techniques described in refer-
ence 5. An analytical solution for the minimization exists for the two-hinge
uncoupled configuration. (See appendix B.)

In principle, it is possible to find the best damped two-body, one- or
two-hinge configuration without restricting the mass distribution, body shape,
or hinge orientation. In practice, the computational problems and, in partic-
ular, the slow rate of convergence to a solution, make such a program too
ambitious, at least for the present. The best that can be attempted at this
time is to choose certain of the parameters so as to promote some symmetry,
thereby reducing the computations to a more manageable level. In particular,
it is assumed throughout that the body geometry and mass distribution permit
the existence of "torque decoupling" axes as described in appendix A and that
these are coincident with the principal axes of inertia. Furthermore, the two
bodles are assumed to be connected so that their centers of mass coincide and
their relative orientation is assumed to be such that, in torque-free equilib-
rium, their "torque decoupling" axes and therefore, also their principal axes
of inertia, coincide. These restrictions imply the existence of two orthog-
onal planes relative to which the mass distribution and surface geometry of
both bodies are symmetrical. When the intersection of these two planes is
alined with the sun line, no torques are acting on either body. The hinge or
hinges are assumed to be perpendicular to the intersection of the two planes.
One of the chief implications of these assumptions is that inertial coupling
due to asymmetrical mass distribution is excluded. This type of coupling has
already been investigated in reference 5.




It is pointed out in reference 5 that the damping of passive solar
oriented systems, expressed in terms of real time, can always be improved by
increasing the natural frequency. This, in turn, might imply unrealistic
ratios of the solar spring constant to the moments of inertia of the satellite
bodies. To make the solutions physically realizable and yet avoid specific
practical design constraints, the damping is normalized by expressing it in
terms of a unit of time proportional to the undamped frequency in roll of the
main satellite body «Ky,/Iy,;, where Kvl i1s the solar spring rate and IVl
is the moment of inertia. In addition, the point of view is adopted that the
main satellite body will be constructed to have the largest practical value of
and, therefore, with all other parameters sized accordingly, the

JK&17IV1
maxirmum damping, and that the remaining corresponding parameters .JKdl7Idl
Jlezl/Idz, JTK&21/IVQ will be no greater than this. The argument in favor
of this is that if any of the above parameters could be made larger than
./Kvl7Ivl, then the same constructional technique could be used to increase
JK@i/Ivl to the same value. This idea can be expressed in the form of the
inequality

IKd | Iv
12Tl~i—-letc.
vy “di

The linear equations of motion of a class of configurations sufficiently
general to include as special cases all those configurations of specifiec
interest are derived in appendix A

ANALYSIS OF SPECIAL SPACECRAFT CONFIGURATIONS

Three separate spacecraft arrangements were studied which are classified
according to the variation of solar pressure torques with attitude. Two
types, described as the wedge-wedge and cone-wedge configurations, have
unequal rates of change of solar pressure torque with each independent atti-
tude motion. These two types, therefore, can be damped when a single degree
of freedom of the relative motion exists between the coupled bodies. The
third type, described as the cone-cone configuration, is axially symmetric
about the solar pointing axis in both mass distribution and external shape.
The cone-cone configuration, therefore, requires a two-degrees-of-freedom
hinge. These three configurations will be discussed separately in the
following sections.

Wedge -Wedge

This configuration is probably the simplest conceivable, two-body single-
hinge, sun-stabilized system. Its essential features are illustrated in fig-
ure 1. Both the main satellite body and damper body are shown as wedges to
indicate that they have solar restoring torques about one axis only. In
torque-free equilibrium, these "solar spring” axes are perpendicular to each
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other and, together with the hinge line,
Hinge axis are perpendicular to the sun line, or yaw
axis. The roll and pitch prinecipal iner-
tias of the main satellite body are
equal. These special characteristics
can be summarized as follows:

K =0
Vo
N\-Iine Kd =0 (l)
~. 1
™~ I =1
Vi V2

The characteristic polynomial of this
system may be obtained directly from the
linear dynamical equations derived in
appendix A. Using conditions (1), the
polynomial, in dimensionless form, is
the determinant

Figure 1.- Wedge-wedge configuration.

d T4,
<§—3-+ i> 241 0 - f—— s2 sin vy
Vi Vi
a=Ivy\ Ia Id Kg,Ivy
2 2 2 2 2 2 2
s —-—= —_—e =
0 <é + i> + <§v11d2> Ivl <s Kled cos ¥y 0
(s®+1)sin v -s2 cos vy (Bs+C) —= I
Vi

(2)
where s 1s a dimensionless Laplace transform variable and
C = (K/Ia,)(Ivy,/Ky,) and B = (D/Ig,) JKy /I, are the dimensionless hinge
spring and damper constants. The factor s® = 0 in equation (2) merely repre-
sents the fact, mentioned earlier, that motion about the sun line (yaw axis) is
not stabilized. It is clear from equation (2) that the hinge axis must be
skewed to the torque decoupling axes because if sin ¥y = O or cos ¥ = 0, an
undamped mode of motion is present. Thus, a system with damping about both
pitch and roll can be achieved only if

V4 7£ % n=0,1,2 (3)

In addition, the ratio of the constant coefficient to the coefflcient of the
highest power (s8) of the characteristic polynomial is



o 22 ()
Ivy .KV1
Id2 Idl Idl do

—=(=——+4 L)os® y + — | =—= + %)sina
Iy, \Iv, ‘> vy \Ivy 4

and since, for stability, this quantity must be positive, it follows that
C(Kgn/Kv,)(Ia,/Iy,) must be positive. Since C = (K/Ky,) (Iy,/Ia,), it follows,
therefore, that K/Kdz must be positive for stability. This requires that
Ka, be positive since K must alsc be positive for a mechanical spring. In
other words, the solar torques on the damper must be in the stable sense. The
above derived conditions necessary for stability are illustrated in figure 1

80 - by the position of the hinge line and
the shape of the damper.

§4OL _——__——~_~‘\\‘\\\“~————— The results of computations by the
»~

method of steepest ascent (ref. 5) to
find the best damped wedge-wedge con-
figurations are shown in figure 2. The
L2 damper inertia parameter Idl/Ivl has
been chosen as the independent variable,
and the other free parameters shown are
required to achieve optimum damping for

Id2/ Iv,
B
_________——-—-\\:\\\\\\—— a particular value of Idl/Ivl- The
,4L \\\\\‘\-\§\_\\\\\\>h--—. damping parameter opg. )KV17IV1 repre-
c
1 | | | —

Ka,/ Ky

2/ sents the real part of the root of the
least damped mode normalized by the

0 natural frequency of the main body

-3 alone.

As noted in the Introduction, the

< -2l performance of an alternative scheme
3 which relies on asymmetric mass distri-
‘2_4L bution to promote the necessary coup-
Z ling for a single-axis damper has been

reported in reference 5. A comparison
1 L I ] J of results indicates that a comparable
° 2 4 © 8 10 spacecraft of the wedge-wedge type
ta/ T would be better damped by a factor of

Figure 2.- Optimum damping and assoclated 3 Oor more.
values of free parameters for the wedge-
wedge configuration.

Cone-Wedge

Some improvement in the performance of the torque-coupled, single-hinge
systems might be expected if the main body produced restoring torques about
all axes normal to the sun line. A special configuration of this type was
studied in which the main body was assumed to be axially symmetric in mass
distribution as well as in external shape. As in the wedge-wedge arrangement,
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the hinge axis was assumed to be in a plane normal to the axis of symmetry.
The special conditions for the cone-wedge can be summarized as follows,

=K
Vi Vo
Key =0 (5)
I =1
Vi Vo

Using conditions (5), the determinant of the characteristic polynomial of the
dimensionless linearized equations of motion becomes:

I
<II_d;|; + 1>52+l 0 - % s2 gin vy
V1 Vi
I, \ I I Kg, I
82 0 <Id2 + l>52+[1'+ <Kd V1> d2:| _d2_ S2 + K__z_ 1&}05 vyl = [0}
Iy, Ky, 1 Ly Iy, vy Lap
Idl
(s2+1) sin v -(s®+1)cos 7y (C+Bs) —
Ivl

(6)

As in the case of the wedge-wedge system, an undamped mode of motion exists
unless the hinge axis is skewed to the torque decoupling axes, so that the
condition expressed by (3) must be satisfied. The ratio of the constant coef-
ficient to the coefficient of the highest power (s } of the characteristic
polynomial is, in this case,

-C <l + é> = 2 cos? 4

T T (1)
I .
d I4 Ta
B I——l— + l>cos y - ——l-<f—- + l>sin2 ¥
Ivl Vi Vi

which must be positive for stability. This implies that

K
%2 =G (8)

Ky
Y ocos? g <§§i> + C
1

Since C 1is positive for a real spring in which torque opposes rotation, the
ratio of the solar "springs" Kd2 and Kvl mist always be more positive than
sonme negative number. Since the manner in which the Laplace variable was
normalized implies that Kvl i1s always positive, it follows that the crite-
rion can be satisfied when the solar torques on the damper body are destabi-
lizing as well as when they are stabilizing. This possibility is illustrated
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Figure 3 - Cone-wedge configuration.
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Figure 4. - Optimum damping and associated
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values of free parameters for the cone-
wedge configuration.

by the cone-wedge arrangement in figure 3
where the wedge, representing the damper
body, is shown open toward the sun.

The results of the computations to
find the best damped cone-wedge systems
are shown in figure L. The damper body,
for all damper inertia ratios, is shown
to be destabilized by the solar pressure
torques (Kdg/Kdl negative). This system
should be better damped than the wedge-
wedge because the torques on the coupled
bodies caused by a given attitude error
will be opposite in sense, thus leading
to the maximum relative motion and, there-
fore, to the maximum energy dissipation
in the damping mechanism. This is borne
out by the results which show that the
damping for the cone-wedge system is
about 20 percent greater than for the
best system of the wedge-wedge type.

Cone-Cone

When both connected bodies are
axially symmetric, the small angle
motions are not coupled and, therefore,
two degrees of freedom are required.
Axial symmetry requires that:

3
K = K
Vi Vo
Kdl = Kd2
> (9)
I =T
Vi Va2
Idl = Id2 J

When these conditions are imposed and
the hinge angle 7 is chosen to be /2
the linearized equations of motion given
in appendix A yield the following for the
determinant of the characteristic
polynomial:



~

Sun-line

Figure 5.- Cone-cone configuration (two-
degrees-of -freedom hinge).

e ———— ————

KdI/K"I free
—_——— Kdl/K"I =0

—
————
——— e —

Figure 6.- Optimm damping and associated
values of free parameters for the cone-
cone configuration.

@) @B
Ivl Ky,

Idl
(s + 1) ———-<%s + C)
IV1

As would be expected, there are two
modes of motion which are undamped. One
of these modes represents rotatlons about
an axis normal to the hinge axis and will
be damped if an additional degree of
damper freedom i1s allowed.

(10)

The optimization of the damping of
the planar oscillations represented by
the 2x2 determinant of equation (10) can
be cast in a form analogous to the damp-
ing of the pitch librations of a gravity
stabilized satellite such as that ana-
lyzed in reference 6. Pertinent results
from reference 6 are used in appendix B
to derive the parameters for the best
damping for two-degrees-of-freedom solar-
stabilized spacecraft. A typical cone-
cone configuration is sketched in
figure 5 and formulas for the optimum
damping and associated parameters are
given in table I.

The results for two-degrees-of-
freedom dampers are given in figure 6.
The damping exceeds that for the single-
hinge systems by a factor of 2 or more.
To achieve this damping, the damper body
is shown to be destabilized by the solar
pressure torques. From Ig, /Iy, = O to

0.382, (Kdl/Ivl)/(Kvl/Ivl) = -1, indicat-
ing that, per unit of inertia, equal and
opposite torques are generated on each
body in respounse to a disturbance. As
will be noted in the next section, desta-
bilizing solar pressure torques on the
damper body are undesirable in some
instances. The performance was also

11



studied, therefore, for the case when the damper is specified to have no solar
torques (Ka_l = 0). For this case the damping is approximately halved.

DESIGN CONSIDERATIONS

Most missions for which a passive, solar-stabilized spacecraft is attrac-
tive are likely to be extremely long and may require an elliptic heliocentric
orbit. Both of these factors can cause significant departures from those con-
ditions for which the damping of the attitude motion has been maximized. On
lengthy missions the properties of the spacecraft surfaces are expected to
deteriorate, thereby changing the restoring torques. A more pronounced, and
predictable, effect will be caused by elliptic orbits. These orbits cause off-
optimum conditions because of the inverse square variation of solar pressure
with distance to the sun. The criteria for selecting a particular design,
therefore, will probably be heavily weighted toward maintaining adequate damp-
ing despite departures from the design parameters.

IOOOF 3 . . -

I The effect of variation of distance

T 025 from the sun is shown in figure 7 for the
.= configurations that have been studied.
The results are presented to show the

effects of departure from the solar dis-
tance for which the performance is an

optimum. The ordinate TSD=1 is the

time to damp to 1/e of the initial
2 amplitude normalized by the natural fre-
Cone-cone (optimum guency when 8D = 1. The curves, there-
Cone~cone (Kg = 0) fore, represent the variation of damping
—_——— &ﬁf;ﬁ$° time with relative distance from the sun.
Several of the configurations are shown
to be unstable when the solar distance is
decreased by as little as 10 percent.
This instability is traceable to the
presence of a destabllizing damper body.
Although such bodies consistently provide
the best damping for optimum conditions,
they are more sensitive to off-design con-
ditions. Instability results when the
destabilizing torque on the damper over-
comes the restoring torque on the mechan-
ical spring that positions the damper
Distance 1o sun___ gp relative to the main body. The damped
Distance 1o sun for optimum body then moves to one side until the
limit is reached, causing an attitude
error and cessation of damping.

1000

1

100+

Tsp=1

Figure 7.- The effect of solar distance on
damping.

The instability with decreasing solar distance is avoided if a configura-
tion is chosen for which the damper body is at least neutrally stable with
respect to solar pressure torques. For the wedge-wedge configuration, the

12



damper body is required to be stable and the damping does not diminish drasti-
cally as the solar distance is decreased. The cone-cone arrangement can be
specified to have no solar pressure torques on the damper. This arrangement
has somewhat better performance than the wedge-wedge for almost any solar
distance.

The choice of a single-degree-of-freedom or two-degrees-of -freedom damper
would most certainly be based on considerations other than the level of damping
afforded by each. TFor either damper, the crucial item in the mechanization of
a passive solar stabilization scheme is most likely to be the spring-damper
mechanism which connects the maln and damper bodies. When it is realized that
the whole scheme depends upon pressures, which at Earth distance are on the
order of only 0.45x10"> newtons/meterz, it becomes apparent that the spring-
damper must be entirely free of friction, or "stiction" as it has come to be
called, and must furnish a precise, but small, spring constant. Spring-damper
devices with these characteristics have been designed and built for passive-
gravity-oriented spacecraft. (See refs. 7, 8, and 9.) Of particular interest
for application to solar spacecraft are devices that employ a diamagnetic
bearing.

CONCLUDING REMARKS

Several techniques have been studied for passively damping an inter-
planetary spacecraft that is oriented toward the sun by solar pressure torques.
All of the methods considered rely on dissipating the energy of the relative
motion between two connected bodies. The principal difference in the tech-
niques was whether one or two degrees of freedom of the relative motion was
permitted. When only a single degree of freedom was permitted, it was neces-
sary to provide coupling between the attitude motions so that any disturbance
would cause relative motion between the two bodies. In this study, the coup-
ling was provided by different rates of change of torque for each independent
attitude angle.

Although the damping of the single-hinge spacecraft was always inferior,
single-hinge arrangements were found that were sufficiently well damped to
reduce the oscillation amplitude by 60 percent within the time required for
one cycle of oscillation of an undamped spacecraft. It is possible to provide

better damping for either arrangement by shaping the auxiliary, or damper, body

to cause the solar pressure forces to be destabilizing. The damping of such
arrangements, however, is extremely sensitive to changes in the distance from
the sun and have an unstable mode when the solar distance is decreased by as
little as 10 percent.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, Mar. 28, 1968
125-19-03-0L-00-21
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APPENDIX A
DERTVATION OF THE LINEARIZED EQUATIONS OF MOTION

The linearized equations of motion are developed for a spacecraft conflg-
uration sufficiently general to include, as special cases, all the spacecraft
configurations analyzed in this report. The conditions defining the degree of
generality of the configuration along with other simplifying assumptions are
as follows:

(a) A set of three mutually orthogonal axes (torque decoupling axes) can
be found for both the main satellite body and damper body, such than an angu-
lar rotation about any one axis produces no solar torques about either of the

other two axes.

(b) The undisturbed steady-state orientation of the main satellite body
and damper body relative to one another is such that their torque decoupling
axes coincide. TFurthermore, in undisturbed steady state one of these axes
coincides with the sun line, and angular rotation about this axis produces no

solar torques about either body.

(¢) The vector solar torque acting on either body in the undisturbed
steady-state orientation is zero.

(d) The principal axes of inertia and torque decoupling axes of the main
satellite body and the damper body coilncide.

(e) The centers of mass of the damper body and main satellite body
coincide.

(f) Both the main satellite body and damper body are rigid.

(g) The orbital angular velocity of the satellite is small compared with
the circular frequency of oscillation of the satellite.

The linearized dynamical equations of the satelllite system are derived
most elegantly from Lagrange'!s equations of motion.

For small rotations, the orientation of the main body and damper from
their initial positions can be described by a vector rotation gquantity. Thus,

the vector rotation B of the main body with respect to its equilibrium
position is

E = I;l: ‘_7'2; ;Sl P
© (A1)

v

1k



The rotation E of the damper body with respect to the main body is

E = l(_l-l, 32, Esl o
%4
o}
= |vi, ‘72: VSI Mya | O (A2)
%a
0
where to a first order
cos vy -sin y 0
M= |siny cos 7y 0 (a3)
0 0 1

Substituting equation (A3) into equation (A2) produces the following,

E = |\71, \—/:2, ;3‘ 'Qd sin vé

Gd cos vy

0

Therefore, the rotation @ of the damper with respect to inertial space is

a=§+§=(\71,;2,\73l (p-@dsiny
6 + Bd cos vy (AL)
v

The kinetic, potential, and dissipative energy expressions may now be written
as follows

-1 2 "2 2 2
T= 2 I:zld.alj N IV]_(P * IV26 * IV31J/ :} (A5)
. J
J
.1 2 2 2 2 2
V=3 [j{}deaj + K§1@ + K§26 + K§3W + Ko (46)
J
I
A= > D@d (A-7)
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Lagrange's equations for the system are,

g‘f S—Z’) SZ §—§=T2e (29)
AR A AL (810)
CANE A RN

Substituting for T, V, and A from equations (A5), (A6), and (A7) into equa-
tions (A8), (A9), (A10), and (All) and using equation (Ak) for & yields the
following equations of motion.

< + T >cp+ <d1 + Kvl> <I 9 + Ky 9d>sin ¥ e (A12)

I
e

Iq +Iv2>9+<d +K>9+<I 5, + Ky e>cosy =T, (A13)
5 e
(Ids + I >w = Too (ALL)
(Idlcp )sin Y + <Id29 + Kd29>cos 7
o .
+<Id2 7 + I sin 7>6d
+(K, cos® y + XK., sin® y)o. + K9, + D, = T (A15)
do dy d d d 4e

The characteristics determinant of this system is
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1 2
(I d1+Iv1> +<K dl+Kv_l>

0

2
0 (I d2+Iv2>S +# K d2+Kv
0 0
12 . 12
<Idls +Kdl>51n 4 (Idzs +Kdz>cos 7

s' 2+K i
N a, Fin Y
I.s' 2+K

o 4., oS 7

o]

2>.

1 2
(I ds+IV:_’>5

05?2 7+Ey sin® 7+K>
1

2
0s® y+I, sin® 7}' +Ds*
da

(A16)

By standard operations this determinant may be reduced to the following form.

(I . > <Kd1+Kv1>

0

2
<I s'54K >sin y
Vi Vi

2
<I tl'3+ Iv3>s !

0

_ §2 R
(Idls +Kdl>51n Y
12 |2
<Id2+Iv2>s + <Kd2+Kv2> <I dzs +Kd os vy
2
_<I s' +K Qcos ¥

Vo v,

(Ds'+K)

(A1T)

Equation (Al7) may be made dimensionless by replacing s' by s,Kvl/Ivl and

dividing each row by K .

(z 1)+ (’Ll)
= 7

(s® + 1)sin ¥

Iy,

- s
T

The result is

Ig
0 (=52 Iﬁ)sin y
Vi V-
52 + (2 Kv2> <I—d?— s2 + KE)COS ¥
KVl Ky Ly Kvy
Ky dy
2, -2 Bs + C) —
%, o8 7 (Bs + C) T

where constant factors have been deleted.

(A18)
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APPENDIX B
OPTIMUM DAMPING OF TWO-DEGREES -OF -FREEDOM UNCOUPLED CONFIGURATION

Tt follows from equation (10) that the characteristic equation for the
motion about the 07 axis of an uncoupled two-degrees-of-freedom configura-
tion is

Ig a Ty
s% + 5B <:—£-+ i> + 52[ c <$—i-+ i> + 1+ L} + sB <; — 4 ¥>
~I Vi IVl IVl
I3
+ [ ¢ <% T i) + L] =0 (B1)
Vi

where

K I
_EL —Xi-and ‘L‘ < 1

L =
KVJ_ Id.]_

Equation (Bl) has the identical form of the characteristic equation
treated in reference 6. Rather than attempt to interpret the solutions given
in reference 6 in terms of the particular notation adopted here, one of the
general results of reference 6 will be used to derive the particular solutions

of interest.

Tt is shown in reference 6 that the best damping for the system under
consilderation occurs when the characteristic equation has repeated pairs of
complex roots. The characteristic equation therefore can be written in the
form

(s + 0+ 1i8)3(s + 0 - i8)2 =0 (B2)
where o and 8 are real quantities. The expanded form of equation (Bl) is
s* + los® + (282 + 602)s2 + ho(o® + 82)s + (0@ + 82)2 = 0 (B3)

The coefficients of equations (Bl) and (B3) may be equated; thus,

18



ho = —+ 1 (BL)
Ty
a
2(82 + 302) = ¢ G—f—l +1+.L (B5)
Vi
I
bo(o® + 33) = B (L ;iﬁk 1) (B6)
Vi
T
(o + 58)2 = ¢C (L I—i-l-+ 1>+L (B7)
i

The quantities 8, B, C may be eliminated from equations (BL) to (B7) to

yleld the following expression for o 1in terms of Id /Iv and L.
1 1

Ta,
-1

Iy,
2 I I
d
<}_+ ——i> <} + L -é%>
Ly Tyy

Dividing equation (B6) by equation (BlL) yields

(B8)

0% + & = ————— (B9)

and substituting for o from equation (B8) into equation (B9) results in the
followlng expression for 52

I I

a a

L1+ L l> -—l-(l—L)2
T,

52 - (B10)

b l+Iv:|_>< >

A necessary condition that the solution be of the form given by equation (B2)
is that

19



o2 20
52 =20

From equations (B8) and (B10) these conditions become
Idl
1+L=—}20
Tvy

I Ig

1 1

L{1+1L T“> -— (1 -1)% =0
V1. Vi

It follows from equation (B8) that for a given value of Idl/Ivl the smaller

the value of L the greater the value of the damping coefficient o. Thus,

maximum damping for a given value of Idl/Ivl occurs at the smallest wvalue

of L for which the following conditions hold:

Idl
1+L=—)20
Iy,

I;\2 I
dy d
L <; + L > - ——i-(l -L)2 =20
1

(B11)

I Vs

L] =1

)

The third of the inequalities (Bll) shows that the lowest bound on L is -1.
From equation (B8) the corresponding maximum damping is

(B12)

However, the range of validity of this solution is given by the first two of

inequalities (Bll) which, when L = -1, become
'\
Idl
—_—< ]
Ivl
> (B13)

20



The second of inequalities (B13) holds if, and only if

I I
Idls32-ﬁand d123;\/?

Vi 1

However, the first of inequalities (Bl3) excludes Ig /Iy, = (3 +4J5)/2 and

since physical considerations ensure that Idl/IVJ_ 2 0, the solution (B12)
exists if, and only if,

Idl
3 - ’5
0 = T, < 2 (B1L)

When Idl/Ivl > (3 -J5)/2, the first two of inequalities (Bll) must determine
the minimum value of I and, therefore, the maximum damping. Since, when
Idl/IVl = (3 -J?)/z and L = -1 the solution lies on the boundary of the
region defined by the second of inequalities (Bll), it seems reasonable to
examine the solution along the boundary for Idl/Ivl > (3 - ,\]'5’)/2. In this

case, the second of inequality (Bll) becomes an equality and may be solved for

L
Idl 1/2 .
<I?r:> -2
T (B15)

I =
Ivy Ivy

Substituting this value of L 1into the first of inequalities (B11l) yields

1/2 T
o) (7
Vi IVl

dy
T dl>l /2 I dl
— + 2 —

which is always greater than zero when Idl/Ivl > 0 so that the value of L
which satisfies 82 = O satisfies the first of inequalities (B1l) when
1q,/Iv, > 0. Therefore, the solution on the boundary &2 holds when

Idl/Ivl > (3 -J5)/2 and the value for the maximum damping from equation (B8)
is

(B16)

_ 1
Cmax g\ 2
1+ 2 <$—i>
IV;L
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Graphs of o against Idl/IV1' from equations (Bl2) and (B16) are given in
figure 6. The corresponding values of B and C can be derived from
equations (BL) to (B7),

(B17)
<%;:-+ %)
Ta,\"
(1 - L)[l - L T > ] 5

[T
+
I the damping body is constrained to have no solar torques acting on it, then

I = 0. For this condition the first and third inequalities of (Bll) are
always satisfied, while the second of inequalities (Bll) is satisfied if

Therefore, in the region O < Idl/Ivl < 4 the meximum damping is given by

The damping constant B and spring constant C are given by equations (Bl?)
and (B18), respectively, with L = O. When Idl/Iv > L, the solution on the

82 = 0 boundary holds and J > O.

A summary of a1l pertinent formulas is given in table T.
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TABLE I.- FORMULAS FOR UNCOUPLED SYSTEMS

Unconstrained optimum demping

I . . .
Renge of % L Dar;rplng B Freq\gency ) Damplnchonsta.nt, Spring gonstant s
Vi max
5 G -a3] [
= - 3 — +1 T 1 +<I )
T I
0< tay <3- -1 A = = 2 -
I, 2 2 2
1 a I I
1-@-—1 <1> <1+—dl->1-<£—l> 1+—dl 1 d
V1 IVl Lyy, IVJ.
<1_d_1>” " F -
3 -45 < E.d_.l. <L vy Ivi Iy
2 Iy, <1 /2 1/2
I > GV]_)
I3
0s—=<kh 0 1
Ty,




