3,402 research outputs found

    Ceramic identity contributes to mechanical properties and osteoblast behavior on macroporous composite scaffolds.

    Get PDF
    Implants formed of metals, bioceramics, or polymers may provide an alternative to autografts for treating large bone defects. However, limitations to each material motivate the examination of composites to capitalize on the beneficial aspects of individual components and to address the need for conferring bioactive behavior to the polymer matrix. We hypothesized that the inclusion of different bioceramics in a ceramic-polymer composite would alter the physical properties of the implant and the cellular osteogenic response. To test this, composite scaffolds formed from poly(lactide-co-glycolide) (PLG) and either hydroxyapatite (HA), ÎČ-tricalcium phosphate (TCP), or bioactive glass (Bioglass 45SÂź, BG) were fabricated, and the physical properties of each scaffold were examined. We quantified cell proliferation by DNA content, osteogenic response of human osteoblasts (NHOsts) to composite scaffolds by alkaline phosphatase (ALP) activity, and changes in gene expression by qPCR. Compared to BG-PLG scaffolds, HA-PLG and TCP-PLG composite scaffolds possessed greater compressive moduli. NHOsts on BG-PLG substrates exhibited higher ALP activity than those on control, HA-, or TCP-PLG scaffolds after 21 days, and cells on composites exhibited a 3-fold increase in ALP activity between 7 and 21 days versus a minimal increase on control scaffolds. Compared to cells on PLG controls, RUNX2 expression in NHOsts on composite scaffolds was lower at both 7 and 21 days, while expression of genes encoding for bone matrix proteins (COL1A1 and SPARC) was higher on BG-PLG scaffolds at both time points. These data demonstrate the importance of selecting a ceramic when fabricating composites applied for bone healing

    A large time step 1D upwind explicit scheme (CFL > 1): Application to shallow water equations

    Get PDF
    It is possible to relax the Courant–Friedrichs–Lewy condition over the time step when using explicit schemes. This method, proposed by Leveque, provides accurate and correct solutions of non-sonic shocks. Rarefactions need some adjustments which are explored in the present work with scalar equation and systems of equations. The non-conservative terms that appear in systems of conservation laws introduce an extra difficulty in practical application. The way to deal with source terms is incorporated into the proposed procedure. The boundary treatment is analysed and a reflection wave technique is considered. In presence of strong discontinuities or important source terms, a strategy is proposed to control the stability of the method allowing the largest time step possible. The performance of the above scheme is evaluated to solve the homogeneous shallow water equations and the shallow water equations with sourc

    Mid-UV Narrow-Band Indices of Evolved Simple Stellar Populations

    Get PDF
    We explore the properties of selected mid-ultraviolet (1900-3200 angstrom) spectroscopic indices of simple stellar populations. We incorporate the high-resolution UVBLUE stellar spectral library into an evolutionary population synthesis code, based on the most recent Padova isochrones. We analyze the trends of UV indices with respect to age and chemical composition. As a first test against observations, we compare our results with the empirical mid-UV spectral indices of Galactic globular clusters (GGCs), observed with the International Ultraviolet Explorer. We find that synthetic indices exhibit a variety of properties, the main one being the slight age sensitivity of most of them for ages >2 Gyr. However, for high metallicity, two indices, Fe II 2332 and Fe II 2402, display a remarkably different pattern, with a sharp increase within the first two Gyr and, thereafter, a rapid decline. These indices clearly mark the presence of young (similar to 1 Gyr) metal-rich (Z >= Z(circle dot)) stellar populations. We complement existing UV indices of GGCs with new measurements, and carefully identify a subsample of 10 indices suitable for comparison with theoretical models. The comparison shows a fair agreement and, in particular, the strong trend of the indices with metallicity is well reproduced. We also discuss the main improvements that should be considered in future modeling concerning, among others, the effects of alpha-enhancement in the spectral energy distributions

    Enlightening wellbeing in the home: the impact of natural light design on perceived happiness and sadness in residential spaces

    Get PDF
    As more people move towards work-from-home options during the COVID-19 pandemic, residential indoor environments are increasingly becoming places where we spend a large share of our time living, working and studying. While the relevance of indoor environments for our emotional wellbeing is well established, little is known about the specific aspects of residential indoor spaces that affect negative and positive emotions. This article studies the relationship between natural lighting in the home and the emotional subjective wellbeing (E-SWB) of its inhabitants. In a randomised control trial, we test the hypothesis that natural lighting improvements in housing contribute to residents' E-SWB, determining which aspects of housing daylight design are more relevant for this. A total of 750 participants took part in the experiment and rated, according to their perceived happiness or sadness, a series of 3D computer simulations representing seven types of natural lighting improvements in the home. The results show that the natural lighting conditions of housing significantly impact people's perceptions of happiness and sadness, with settings that have an increased amount of daylight entering the home leading to the greatest impacts

    Identification of the dynamics of biofouled underwater gliders

    Get PDF
    Marine growth has been observed to cause a drop in the horizontal and vertical velocities of underwater gliders, thus making them unresponsive and needing immediate recovery. Currently, no strategies exist to correctly identify the onset of marine growth for gliders and only limited datasets of biofouled hulls exist. Here, a field test has been run to investigate the impact of marine growth on the dynamics of underwater gliders. A Slocum glider was deployed first for eight days with drag stimulators to simulate severe biofouling; then the vehicle was redeployed with no additions to the hull for a further 20 days. The biofouling caused a speed reduction due to a significant increase in drag. Additionally, the lower speed causes the steadystate flight stage to last longer and thus a shortening of mission duration. As actual biofouling due to p. pollicipes happened during the deployment, it was possible to develop and test a system that successfully detects and identifies high levels of marine growth on the glider using steady-state flight data. The system will greatly help pilots re-plan missions to safely recover the vehicle if significant biofouling is detected

    Learning on a Budget Using Distributional RL

    Get PDF
    Agents acting in real-world scenarios often have constraints such as finite budgets or daily job performance targets. While repeated (episodic) tasks can be solved with existing RL algorithms, methods need to be extended if the repetition depends on performance. Recent work has introduced a distributional perspective on reinforcement learning, providing a model of episodic returns. Inspired by these results we contribute the new budget- and risk-aware distributional reinforcement learning (BRAD-RL) algorithm that bootstraps from the C51 distributional output and then uses value iteration to estimate the value of starting an episode with a certain amount of budget. With this strategy we can make budget-wise action selection within each episode and maximize the return across episodes. Experiments in a grid-world domain highlight the benefits of our algorithm, maximizing discounted future returns when low cumulative performance may terminate repetition

    Carbon Exchange and Accumulation in an Orinoco High Plains Native Savanna Ecosystem as Measured by Eddy Covariance

    Get PDF
    Savanna ecosystems cover ∌20% of the total land surface and account for ∌30% of the terrestrial global net primary production. They are also highly sensitive to climate change, since their carbon (C) sink capacity may decline under rising temperatures and irregular rainfall. These responses, which will define the future climate role of the savanna ecosystems, are currently not well understood. The Colombian Orinoco River basin (“Llanos”) natural savannas are being rapidly converted to agriculture. The impact of this transformation on C fluxes and accumulation is not clear. It is thus urgent to understand the Llanos natural savanna ecosystem services, including their C cycle and underlying mechanisms. Here we report and analyze 2 years of measurements of carbon dioxide fluxes from a naturally-restored (secondary) Llanos High Plains savanna ecosystem, using eddy covariance. Meteorological conditions, particularly rainfall, were quite variable during the measurement period. During the first year of measurements, the savanna was a weak carbon source (35 gC m−2), while during the second year, the system was a comparatively strong carbon sink (−273 gC m−2), despite receiving less rainfall than during the first year. As expected, the savanna net ecosystem exchange (NEE) was highly dependent on global solar radiation, soil water content, and ecosystem respiration. We found that after ∌10 days of nominal drought, i.e., with less than ∌5 mm/day of precipitation, the NEE became highly dependent on drought duration. The ecosystem reached a critical condition of low photosynthetic activity after ∌60 days of nominal drought. Based on these findings, we developed and applied a simple standard meteorology-based model that properly reproduced the observations. Our results indicate that a shift to a climate with similar total precipitation but split into extreme dry and wet seasons might eventually suppress the savanna C uptake capacity
    • 

    corecore