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Abstract

It is possible to relax the Courant-Friedrichs-Lewy condition over the time
step when using explicit schemes. This method, proposed by Leveque, pro-
vides accurate and correct solutions of non-sonic shocks. Rarefactions need
some adjustments which are explored in the present work with scalar equa-
tion and systems of equations. The non-conservative terms that appear in
systems of conservation laws introduce an extra difficulty in practical appli-
cation. The way to deal with source terms is incorporated into the proposed
procedure. The boundary treatment is analysed and a reflection wave tech-
nique is considered. In presence of strong strong discontinuities or important
source terms, a strategy is proposed to control the stability of the method al-
lowing the largest time step possible. The performance of the above scheme is
evaluated to solve the homogeneous shallow water equations and the shallow
water equations with source terms.

Keywords: Large time step scheme, Hyperbolic conservation laws, Source
terms, Boundary conditions, Shallow water flows, CFL limit

1. Introduction1

Upwind methods have proved a suitable way to discretize the shallow2

water equations being able to predict the water profile and discharges in hy-3

draulic modelling [1]. The first order explicit upwind method, in particular,4

has gained widespread acceptance in this area because of its conceptual sim-5

plicity despite the time step size is restricted by stability reasons to fulfil the6

Courant-Friedrichs-Lewy (CFL) condition.7

It is possible to relax the condition over the time step size when using8

explicit schemes. A generalization of the first order explicit upwind scheme,9
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modified to allow large time steps, was explored by Leveque [2, 3] (Large Time10

Step, LTS) first in the scalar non-linear case and then adapted to systems11

of equations. It becomes stable for CFL values larger than 1 and provides12

accurate and correct solutions of shocks. Some difficulties can be met when13

a rarefaction is present in the solution so that adjustments are necessary.14

Other class of large time step explicit schemes based on TVD properties [4]15

have been analysed and tested mainly for the scalar equations or systems of16

equations without source terms. These will not be considered in the present17

work.18

The LTS scheme is increasingly used because it is able to achieve a re-19

duction in the computational time keeping reasonably accurate. Engineering20

applications related with atmospheric dynamics [5] and Euler equations [6]21

have been recently published. The shallow water equations, being a hyper-22

bolic system of equations, are also a good candidate for the application of23

the LTS scheme and an overview of this scheme in the context of the shal-24

low water system was presented in [7]. The source term treatment and the25

boundary conditions discretization are crucial to allow stability in presence26

large CFL values in realistic cases.27

The source term discretization has been strongly discussed in the litera-28

ture. The main focus consisting on maintaining the discrete balance between29

flux and source terms giving rise to well-balanced schemes [8, 9, 1] has given30

way to techniques that prevent instability and ensure conservation by a suit-31

able flux difference redistribution [10] avoiding the necessity of reducing the32

time step below the CFL condition. The idea of using a stationary jump33

discontinuity representing the source term in the Riemann solution [11] and34

the corresponding augmented approximate Riemann solvers for the shallow35

water equations [12] can be incorporated to the LTS scheme. Moreover, in36

several situations, the presence of large source terms playing a leading role37

over the convective terms can lead to wrong solutions using the LTS because38

the wave celerity is not well estimated due to the reduced number of time39

steps done. A way of overcoming this situation is also proposed providing the40

Rankine-Hugoniot conditions derived from the Riemann problem analysis.41

The boundary conditions dicretization is another issue of importance in42

a numerical model. In the context of the shallow water equations, open43

boundaries and closed boundaries can appear and must be analyzed. From44

the structure of the LTS scheme, information is transmitted not only to the45

immediate neighbouring cells but also to a number of other cells growing as46

the CFL value increases. Therefore, some information can cross the bound-47
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aries and a careful consideration is required in order to reproduce all kind48

of scenarios such as subcritical, supercritical and closed boundaries. A first49

approximation of the boundary treatment was also proposed in [7], where50

an accumulation technique was suggested in the case of closed boundaries.51

Another possibility called reflection technique is considered here.52

This method is proposed to be a general tool for solving the 1D shallow53

water equations for open channel and river flow problems. Several problems54

such as wet/dry fronts, sonic points, changes in the flow regime or large55

discontinuities are already solved for the conventional upwind explicit scheme56

hence a kind of CFL limiter can be proposed in order to reduce the initial57

CFL number or directly recover the original scheme with CFL=1 when these58

situations are present.59

The outline is as follows: the discretization is described first, for 1D60

scalar equations with and without source terms. In the non-linear case,the61

treatment of the rarefaction waves is explored. Then, the scheme is extended62

to systems of equations, in particular to solve the shallow water equations63

where bed slope and friction source terms are incorporated into the proposed64

procedure. The way of dealing with the boundaries is analyzed in the cases of65

systems and two possibilities are proposed: an accumulation technique and66

a reflection technique. They are tested in a dam break problem with solid67

wall conditions in the inlet and outlet boundaries. Moreover, the use of a68

parameter that limits the CFL number in the presence of big discontinuities69

or large source terms is proposed. Finally, the scheme is evaluated and tested70

trough several problems with analytical solutions where the bed slope and71

the friction terms plays a leading role.72

2. Scalar equations73

2.1. Linear scalar equation74

Consider the linear scalar equation:75

∂u

∂t
+

∂f(u)

∂x
= 0 (1)

where u is the conserved variable and f(u) is a linear function, f(u) = λu,76

λ = constant.77

The numerical resolution of (1) by means of the first order upwind finite78

volume method starts by integrating (1) in a volume Ω.79
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∂

∂t

∫

Ω

udΩ+

∫

Ω

∂

∂x
f(u)dΩ = 0 (2)

where dΩ denotes the volume boundary.80

In the case of a uniform discrete mesh Ω = ∆x. A cell-centred upwind81

finite volume method is based on a piecewise constant approximation of the82

function. Therefore, u and f are uniform per cell and the first integral of (2)83

can be approximated at cell Ωi by:84

∂

∂t

∫

Ωi

udΩ =
un+1
i − un

i

∆t
∆x (3)

After application of the Gauss theorem to the second integral in (2):85

∫

Ω

∂

∂x
f(u)dΩ = f ∗

i+1/2 − f ∗

i−1/2 (4)

where the numerical flux f ∗

i+1/2 can be determined using an approximate86

solver. The numerical scheme can be formulated in a general way as:87

un+1
i = un

i −
∆t

∆x
(f ∗

i+1/2 − f ∗

i−1/2) (5)

Following the upwind philosophy, which discriminates the sense of prop-88

agation according to the sign of the advection velocity, the quantities89

λ± =
λ± |λ|

2
(6)

allow to express the numerical fluxes in (4) as:90

f ∗

i+1/2 = fi + λ−δui+1/2 f ∗

i−1/2 = fi − λ+δui−1/2 (7)

Therefore, the cell updating in (5) can be reformulated as resulting from the91

sum of two signals instead of the difference of two numerical fluxes (Figure92

1):93

un+1
i = un

i −
∆t

∆x
(δf+

i−1/2 + δf−

i+1/2) (8)

This is a finite volume point of view centered at the cells which accumu-94

lates the arriving signals to update the value of the function at every cell.95

There is another way to consider this situation by looking where the signals96
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Figure 1: Contributions from left and from right in cell i

go from each interface [2]. For example, at interface (i, i + 1) the quantity97

ν δui+1/2, where ν =
∆t

∆x
λ can be defined and it is sent according to the98

sign of λ following the algorithm:99

if λ > 0 ⇒ ν δui+1/2 updates i+ 1

if λ < 0 ⇒ |ν| δui+1/2 updates i
(9)

Both versions of the scheme are equivalent if100

CFL =
∆t

∆x
λ ≤ 1 (10)

The second approach is nevertheless preferable to extend the scheme to CFL101

> 1. As described by Leveque [2], the extension of the scheme to larger time102

steps is achieved by allowing each wave or signal to propagate independently103

from all others waves according to the following algorithm:104

If λ > 0

δui+1/2 updates i+ 1, · · · , i+ µi+1/2

(ν − µ) δui+1/2 updates i+ µi+1/2 + 1

(11)

If λ < 0

δui+1/2 updates i, · · · , i+ µi+1/2

|ν − µ| δui+1/2 updates i+ µi+1/2

(12)
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where µ = int(ν). Figure 2 shows how the information is sent from interface105

(i, i+ 1) to the involved cells when λ > 0 (a) and when λ < 0 (b).106

The proposed scheme is explicit and remains conservative. This is the107

basic formulation of what is called LTS scheme in this work. It is important108

to remark that if CFL 61 the scheme becomes the original first order explicit109

upwind scheme.110

(a)
i+1 i+2 i+... i+µ i+µ+1

i+3/2 i+5/2 i+µ+1/2

δui+1/2

δui+1/2

δui+1/2
δui+1/2

(ν − µ)i+1/2 δui+1/2

(b)
i+µ i+µ+1 i+... i-1 i

i+µ+1/2 i-3/2 i-1/2 i+1/2

δui+1/2

δui+1/2
δui+1/2

δui+1/2

|ν − µ|i+1/2 δui+1/2

Figure 2: Scheme of the contributions from intercell i+1/2 for λ > 0 (a) and for λ < 0 (b)

2.2. Non-linear scalar equation111

Consider now the conservation law:112

∂u

∂t
+

∂f(u)

∂x
= 0 (13)
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where f(u) is a convex non-linear function of u. So that:113

λ =
df

du
λ = λ(u). (14)

which is no longer constant. The LTS scheme, when applied to (13), requires114

the definition of an approximate advection celerity at the intercell as follows:115

λ̃i+1/2 =
f(ui+1)− f(ui)

ui+1 − ui
(15)

Certain new elements appear in this case that are going to be explored using116

the Burgers equation as an example.117

2.2.1. Burgers equation and the Riemann Problem118

The inviscid Burgers equation is a particular case of scalar conservation119

law of the type (13) with f(u) = 1
2
u2. This equation can be written as120

∂u

∂t
+

∂

∂x

(
u2

2

)
= 0 or

∂u

∂t
+ u

∂u

∂x
= 0 (16)

Considering the following initial value problem or Riemann Problem (RP)121

u(x, 0) =

{
uL if x < 0
uR if x > 0

(17)

two different situations appear depending on the relative value of uL and uR.122

When uL > uR a right moving shock develops (see Figure 3).123

(a)

uR

uL

λ̃ = 1
2
(uR + uL)

x

u

(b) x

t

Figure 3: (a) Initial data of a shock; (b) Map of characteristic lines of a shock

The discontinuous solution of the RP in this case is124

u(x, t) =

{
uL if x− λ̃t < 0

uR if x− λ̃t > 0
(18)
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where λ̃ is the speed of the discontinuity:125

λ̃ =
1

2
(uL + uR) (19)

Figure 4 sketches the approximate solution of the RP when dealing with126

a right moving shock.127

-

6

�
�
�
�
�

uL

uL

uR

uR

λ̃

x

t

0

Figure 4: Discontinous solution of (17) when uL > uR

When uL < uR (Figure 5) the solution of the RP consists of a smooth128

rarefaction wave connecting the two constant states uL an uR.129

u(x, t) =





uL if x/t ≤ uL

x/t if uL < x/t < uR

uR if x/t ≥ uR

(20)

(a)

uR

uL

x

u

(b) x

t

Figure 5: (a) Initial data of a rarefaction; (b) Map of characteristic lines of a rarefaction

Assuming uL = ui and uR = ui+1 and integrating (13) over a suitable130

control volume [−∆x
2
, ∆x

2
] × [0,∆t]131
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∫ ∆x
2

−∆x
2

û(x,∆t)dx = ∆x (un
i+1 + un

i )− (f(un
i+1)− f(un

i ))∆t (21)

the approximate solution of the RP û(x, t) can be derived [13].132

As described in [2, 3], the LTS scheme can be used to provide an accurate133

and correct solution of shocks. In presence of a rarefaction, the explicit134

upwind scheme replaces several characteristic lines with a single line and only135

one intermediate state u∗ is defined (see Figure 6 (a)). This approximation is136

effective in the conventional upwind explicit method but can fail when using137

CFL > 1. The proposed LTS includes several intermediate states u∗

1, ..., u
∗

Np
138

corresponding to several discontinuities travelling at different speeds (Figure139

6(b)). The required number of discontinuities Np is related with the strength140

of the RP. A good approximation could be:141

Np = int(
δu ∆t

δx
) (22)

where δu = uR − uL. The proposed way of handling rarefaction waves is142

always conservative.143

(a)

-

6

�
�
�
�
�

uL

uL

uR

uR

u∗

λ̃

x

t

0

(b)

-

6

�
�
�
�
�

�
�
��

�
�
��

uL

uL

uR

uR

u∗

1

u∗

2

u∗

3

λ̃3
λ̃2λ̃1

x

t

0

Figure 6: (a) Classical treatment of rarefaction waves in the upwind scheme; (b) Splitting
treatment of rarefaction waves in the LTS scheme

In order to illustrate the performance of LTS in presence of a rarefaction,144

consider (16) with the initial data:145

u(x, 0) =

{
1.0 if x < 50.0
4.0 if x > 50.0

(23)

The exact solution for this case is146
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u(x, t) =





1.0 if
x

t
≤ 1.0

x

t
if 1.0 <

x

t
< 4.0

4.0 if
x

t
≥ 4.0

(24)

Figure 7(a) shows the exact solution at t = 5s together with the nume-147

rical results obtained with the LTS scheme on a regular mesh of ∆x = 1.0.148

The discretization of the rarefaction in a single wave has been used and dif-149

ferent CFL values are associated to different number of time steps (TS) as150

summarized in Table 1. Only in the case of CFL=1.0 an accurate solution is151

achieved although using 20 TS.152

Figures 7(b) and 7(c) show the exact solution at t = 5s and the numerical153

results obtained with the LTS scheme on a the same grid, now supplied with154

the splitting wave treatment. Different CFL values have been used and are155

summarized in Table 1. The number of time steps used to compute the156

numerical solution and the number of pieces Np the discontinuity has been157

split into are also indicated.158

The larger the CFL value is, the more accurate the numerical solution is.159

Moreover, there is no upper bound in the choice of the CFL value. Only one160

time step can provide the exact solution.161

CFL value Time steps (TS) Np

No splitting waves 1.0 20 -
2.0 10 -
4.0 5 -
10.0 2 -
20.0 1 -

Splitting waves 1.0 20 1
2.0 10 2
4.0 5 3
10.0 2 7
20.0 1 15

Table 1: Summary of numerical solutions

2.3. Non-linear scalar equation with source terms162

Consider now the nonlinear scalar equation with source terms:163

∂u

∂t
+

∂f(u)

∂x
= s (25)
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(a)
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(b)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 40  45  50  55  60  65  70  75  80

u

x

CFL 1.0
CFL 2.0
CFL 4.0

exact

(c)
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CFL 10.0
CFL 20.0

exact

Figure 7: Exact and numerical solution of (16) (a) No splitting rarefaction wave; (b),(c)
Splitting rarefaction wave
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where s is a source term and the local RP:164

u(x, 0) =

{
uL = ui if x < 0
uR = ui+1 if x > 0

(26)

According to Roe’s approach, the solution of the RP is achieved from an165

approximate solution û(x, t) of the locally linearized problem that must fulfil166

the Consistency Condition [9]. Integrating over a suitable control volume167

[−∆x
2
, ∆x

2
] × [0,∆t]168

∫ ∆x
2

−∆x
2

û(x,∆t)dx = ∆x (un
i+1 + un

i )− (f(un
i+1)− f(un

i ))∆t + si+1/2∆t (27)

For the last integral involving the source term s, the following linearization169

is assumed170

si+1/2 =

∫ ∆x
2

−∆x
2

s(x, 0) dx (28)

Following [12], a weak solution of the linear RP in (25),(26) that satisfies171

(27) in the case λ̃i+1/2 > 0 was proposed [12]:172

û(x, t) =





ui if x < 0

u∗∗

i+1 if 0 < x < λ̃i+1/2 t

ui+1 if x > λ̃i+1/2 t

(29)

where λ̃ is the advection velocity as in (15). Note that one wave is associated173

to the celerity λ̃ and the other wave is steady and also that174

u∗∗

i+1 = ui+1 − (θ̃δu)i+1/2 (30)

with175

θ̃i+1/2 = 1− si+1/2

f(ui+1)− f(ui)
(31)

measuring the relative influence of the source and flux terms176

Figure 8 is a sketch of the approximate solution when λ̃i+1/2 > 0.177

In case that λ̃i+1/2 < 0, the procedure is analogous, and the approximate178

solution is:179
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si

ui
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si+1
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ui+1

u∗∗

i+1

λ̃

x

t

0

Figure 8: Approximate solution for û(x, t).

û(x, t) =





ui if x < λ̃i+1/2 t

u∗

i if λ̃i+1/2 t < x < 0
ui+1 if x > 0

(32)

with180

u∗

i = ui + (θ̃δu)i+1/2 (33)

Therefore, the LTS scheme could be written as follows:181

If λ̃i+1/2 > 0

(θ̃ δu)i+1/2 updates i+ 1, · · · , i+ µi+1/2

(ν − µ)i+1/2 (θ̃ δu)i+1/2 updates i+ µi+1/2 + 1
(34)

If λ̃i+1/2 < 0

(θ̃ δu)i+1/2 updates i, · · · , i+ µi+1/2

|ν − µ|i+1/2 (θ̃ δu)i+1/2 updates i+ µi+1/2

(35)

where νi+1/2 =
λ̃∆t

∆x
and µi+1/2 = int(νi+1/2)182
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2.3.1. First approach: application to Burger’s equation with source terms183

Consider Burgers’s equation including source terms as in [12]:184

∂u

∂t
+

1

2

∂u2

∂x
= −u

∂z

∂x
(36)

with the initial data185

u(x, 0) = uo(x) =

{
uL if x < 0
uR if x > 0

z(x) =

{
zL if x < 0
zR if x > 0

(37)

The same RP in [12] are going to be presented here, using ∆x = 1 at186

t = 15s. The source term discretization used is187

si+1/2 = −1

2
(ui+1 + ui)(zi+1 − zi) (38)

All the cases are summarized in Table 2. More information about the188

nature and the exact solution of each test case can be found in [12].189

Table 2: Summary of test cases.

Test case uL uR zL zR
1 2.0 1.0 0.0 0.5
2 2.0 1.0 0.0 -0.5
3 1.0 2.0 0.5 0.0
4 1.0 2.0 0.0 0.5
5 2.0 1.0 0.0 1.5
6 1.0 2.0 1.5 0.0

Figures 9–11 plot the results for each test case using different values of190

CFL. The source term is represented in dashed line, the numerical solutions191

with CFL=1 using (−△−), the numerical solution with CFL=5 using (−�−)192

and that with CFL=30 using (− ◦ −). They are compared with the exact193

solution (—–). Note that CFL=30 is the largest value possible leading to194

one single time step. As can be observed, these test cases are very extreme,195

particularly the cases 5 and 6 where the source term dominate the convective196

term. The numerical solution from the LTS scheme when using CFL>1197

is able to approximate the classical upwind explicit (CUE) scheme using198
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CFL=1, mainly in the test cases 1,2,3 and 4, but is not able to approximate199

the exact solution in a single time step. The main advantage of the LTS200

scheme is that the time step is not restricted by the CFL condition allowing201

large ∆t values. From CUE, the speed celerity λ̃ is estimated as in the202

homogeneous case (15). The fact is that, in several situations with large203

source terms that influence the convective term, using the LTS scheme, this204

linearization could leads to a wrong solution because of an overestimation or205

underestimation of this value. A way to overcome this situation is proposed.206

(a)

 0

 0.5

 1

 1.5

 2

 2.5

-5  0  5  10  15  20  25

u

x

(b)

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

-5  0  5  10  15  20  25  30

u

x

Figure 9: Exact (—–) and computed solutions at t = 15s for (a) test case 1 and (b) test
case 2 using CFL=1 (−△−), CFL=5 (−�−) and CFL=30 (− ◦ −)
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 2.5

-5  0  5  10  15  20  25  30  35

u

x

Figure 10: Exact (—–) and computed solutions at t = 15s for (a) test case 3 and (b) test
case 4 using CFL=1 (−△−), CFL=5 (−�−) and CFL=30 (− ◦ −)

2.3.2. Accurate estimation of the wave celerity207

Let se be the exact value of the integral of the source term in the control208

volume209
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Figure 11: Exact (—–) and computed solutions at t = 15s for (a) test case 5 and (b) test
case 6 using CFL=1 (−△−), CFL=5 (−�−) and CFL=30 (− ◦ −)

se =

∫ ∆t

0

∫ ∆x
2

−∆x
2

s dx dt (39)

A better wave celerity λ̂i+1/2 can be estimated by using directly the infor-210

mation provided by the analytical solution, constructed by means of the211

appropriate Rankine-Hugoniot (hereafter RH) conditions.212

Assuming the RP in (26), a weak solution satisfying (27) for the case213

λ̂i+1/2 > 0 is proposed (the case λ̂i+1/2 < 0 is analogous):214

û(x, t) =





ui if x < 0

u∗∗

i+1 if 0 < x < λ̂i+1/2 t

ui+1 if x > λ̂i+1/2 t

(40)

Figure 12 is a sketch of the approximate solution in this situation. Enforcing215

Rankine-Hugoniot conditions across the two waves:216

{
f(ui+1)− f(u∗∗

i+1) = λ̂i+1/2(ui+1 − u∗∗

i+1)
f(u∗∗

i+1)− f(ui)− se = λs(u
∗∗

i+1 − ui) = 0
(41)

where λs = 0 is the wave celerity associated to the steady discontinuity at217

x = 0. The first RH condition leads to:218

λ̂i+1/2 =
f(ui+1)− f(u∗∗

i+1)

ui+1 − u∗∗

i+1

(42)

In order to apply the method described in (34) and (35), the consistency219

condition using the exact integration of the source term over the control220
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Figure 12: Approximate solution for û(x, t).

volume (27) must be checked. Taking into account the second RH condition221

in (41) :222

se = f(u∗∗

i+1)− f(ui) (43)

Using definitions (30), (42) and (43):223

λ̂i+1/2 θ̃i+1/2 δu = λ̂i+1/2

(
ui+1 − u∗∗

i+1

δu

)
δu =

f(ui+1)− f(u∗∗

i+1)

ui+1 − u∗∗

i+1

(ui+1 − u∗∗

i+1) =

f(ui+1)− f(u∗∗

i+1)− f(ui) + f(ui) = δfi+1/2 − se
(44)

Hence the consistency of our numerical scheme is proved. Next step is to224

replace λ̃ by λ̂ in (34) and (35) leading the following algorithm:225

If λ̂i+1/2 > 0

(θ̃ δu)i+1/2 updates i+ 1, · · · , i+ µi+1/2

(ν − µ)i+1/2 (θ̃ δu)i+1/2 updates i+ µi+1/2 + 1
(45)
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If λ̂i+1/2 < 0

(θ̃ δu)i+1/2 updates i, · · · , i+ µi+1/2

|ν − µ|i+1/2 (θ̃ δu)i+1/2 updates i+ µi+1/2

(46)

where νi+1/2 =
λ̂∆t

∆x
and µi+1/2 = int(νi+1/2)226

2.3.3. Second approach: application to the Burgers equation with source terms227

Considering (36), the RP in (37) and the test cases in table 2, the per-228

formance of the first and second approaches of the wave celerity is evaluated229

at t = 15s and computed with ∆x = 1.230

The same source term discretization as in (38) is used, representing it in231

dashed line. The numerical solutions with CFL=1 (−△−), with CFL=30232

using λ̃ as wave celerity (−◦−) and with CFL=30 using λ̂ as wave celerity (−•233

−) are going to be compared with the exact solution (—–). Also the splitting234

rarefaction treatment as explained before has been used for computing the235

numerical solutions with the LTS scheme.236

Figures 13–15 show the results for all test cases. The main conclusion is that237

the LTS scheme, including a good source term treatment is less diffusive than238

the conventional explicit upwind scheme and it can be able to reproduce the239

exact solution. However, if no correction in the estimation of the wave cele-240

rity is applied, the numerical solution is not able to approximate the exact241

solution. Maybe, when using the CUE scheme there is no noticeable differ-242

ence between the two approaches of the wave celerity, because the method is243

forced to work with small time steps but the LTS scheme allows larger time244

steps, and therefore important error is introduced if a careless estimation of245

the wave celerity is applied. Note that this improvement has been possible246

in the particular case of a scalar equation with known exact solution.247
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Figure 13: Exact (—–) and computed solutions at t = 15s for (a) test case 1, and (b) test

case 2 using CFL=1 (−△−), CFL=30 with λ̃ as wave celerity (− ◦−) and CFL=30 with

λ̂ as wave celerity (− • −)
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Figure 14: Exact (—–) and computed solutions at t = 15s for (a) test case 3, and (b) test

case 4 using CFL=1 (−△−), CFL=30 with λ̃ as wave celerity (− ◦−) and CFL=30 with

λ̂ as wave celerity (− • −)

3. System of conservation laws with source terms248

The extension of the proposed LTS scheme to systems of equations with249

source terms is discussed in this section. A 2x2 hyperbolic nonlinear system250

of equations can be expressed in the form251

∂U

∂t
+

∂F

∂x
= S (47)

where U is the vector of conserved variables, F is the vector of fluxes of these252

conserved variables and S represents the vector of source terms. A Jacobian253

matrix J can be defined254
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Figure 15: Exact (—–) and computed solutions at t = 15s for (a) test case 5, and (b) test

case 6 using CFL=1 (−△−), CFL=30 with λ̃ as wave celerity (− ◦−) and CFL=30 with

λ̂ as wave celerity (− • −)

J =
dF

dU
(48)

The strictly hyperbolicity property of the system ensures that the two255

eigenvalues λ1, λ2 of the Jacobian are real and different and it is possible to256

define two matrices P = (e1, e2) and P−1, with e1, e2 the eigenvectors of J,257

achieving the diagonalization:258

J = PΛP−1 (49)

Considering a RP with initial values Ui,Ui+1:259

U(x, 0) =

{
Ui if x < 0
Ui+1 if x > 0

(50)

Let ∆t be the time step. Now, integrating (47) over a suitable control volume260

[−X,X ] where261

−X ≤ Xmin, X ≥ Xmax (51)

and Xmin, Xmax are the positions of the minimum and the maximum wave262

celerities at t = ∆t263

∫ +X

−X

Û(x,∆t) dx = X (Ui+1 +Ui)−(F(Ui+1)− F(Ui))∆t+Si+1/2∆t (52)
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where Û(x, t) is the approximate solution of the locally linearized RP. The264

source term can be linearized following [12] as follows:265

Si+1/2 =

∫ +X

−X

S(x, 0) dx (53)

Following [12] a three wave approximate solution can be built from (52).266

Û(x, t) is governed by the celerities λ̃1, λ̃2 and consists of four regions. De-267

pending on the flow conditions (subcritical or supercritical) three situations268

can be found. More details of the approximate Riemann solutions for each269

case can be found in [12] . Figure 16 shows the subcritical case:270
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Figure 16: Values of the solution U in each wedge of the (x, t) plane for the subcritical
case.

Provided that Roe’s linearization [14] is used to uncouple the homogeneous271

part of the system, an approximate Jacobian matrix J̃i+1/2 can be built whose272

eigenvalues λ̃1, λ̃2 and eigenvectors ẽ1, ẽ2 satisfy:273

J̃i+1/2 = P̃i+1/2Λ̃i+1/2P̃
−1
i+1/2 (54)

where P̃ = (ẽ1, ẽ2) and Λ̃i+1/2 is a diagonal matrix with eigenvalues λ̃m
i+1/2274

in the main diagonal:275

Λ̃i+1/2 =

(
λ̃1 0

0 λ̃2

)

i+1/2

(55)

Following a flux difference procedure, the difference in vector U across276

the grid edge is projected onto the matrix eigenvector basis and the same for277
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the source term:278

δUi+1/2 =

2∑

m=1

(α ẽ)mi+1/2 Si+1/2 =

2∑

m=1

(β ẽ)mi+1/2 (56)

Therefore:279

(δF− S)i+1/2 = (J̃δU− S)i+1/2 =

2∑

m=1

(
λ̃∗αẽ

)m
i+1/2

(57)

where280

λ̃∗,m
i+1/2 = λ̃m

i+1/2 θ
m
i+1/2 θmi+1/2 =

(
1− β

λ̃α

)m

i+1/2

(58)

being θmi+1/2 the parameter expressing the influence of the source term over281

that of the flux difference.282

Therefore, the LTS scheme can be formulated for systems of equations as283

follows:284

If λ̃i+1/2 > 0

(γ ẽ)mi+1/2 updates i+ 1, · · · , i+ µi+1/2

(ν − µ)mi+1/2 (γ ẽ)mi+1/2 updates i+ µi+1/2 + 1

(59)

If λ̃i+1/2 < 0

(γ ẽ)mi+1/2 updates i, · · · , i+ µi+1/2

|ν − µ|mi+1/2 (γ ẽ)mi+1/2 updates i+ µi+1/2

(60)

where νm
i+1/2 =

∆t

∆x
λ̃m
i+1/2, µ

m
i+1/2 = int(νm

i+1/2) and γ̃m
i+1/2 = (α̃θ̃)mi+1/2285

4. Application to the 1D shallow water equations286

4.1. Equations287

The 1D shallow water mass and momentum system can be written:288
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U =

(
A
Q

)
, F =

(
Q

Q2

A
+ gI1

)
S =

(
0

g [I2 + A (S0 − Sf)]

)
(61)

where Q is the discharge, A is the wetted cross section, g is the acceleration289

due to the gravity, S0 is the bed slope290

S0 = −∂zb
∂x

(62)

Sf is the friction slope here represented by the empirical Manning law291

Sf =
Q2

n2A2R4/3
(63)

where R is the hydraulic radius and n is the Manning’s roughness coefficient.292

I1 represents a hydrostatic pressure force term293

I1 =

∫ zs

zb

(h− η)σ(x, η) dη (64)

in a section of water level zs, bed level zb and width σ(x, η). On the other294

hand, I2 accounts for the pressure force due to the longitudinal width varia-295

tions:296

I2 =

∫ zs

zb

(h− η)
∂b(x, η)

∂x
dη (65)

The approximate Jacobian J̃ is297

J̃i+1/2 =

(
0 1

c̃2 − ũ2 2ũ

)

i+1/2

(66)

with [15]298

c̃ =

√
g
(A/b)i + (A/b)i+1

2
ũ =

Qi+1

√
Ai+1 +Qi

√
Ai√

Ai+1 +
√
Ai

(67)

where b = σ(x, h). The resulting set of approximate eigenvalues and eigen-299

vectors is300

λ̃1 = ũ− c̃ λ̃2 = ũ+ c̃

ẽ1 =

(
1

ũ− c̃

)
ẽ2 =

(
1

ũ+ c̃

) (68)
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4.2. Rarefaction splitting treatment301

Using the LTS scheme (59), (60), when a rarefaction appears in the con-302

text of the shallow water equations, it can be split in several waves travelling303

at different speeds ensuring exact conservation in the sense of Roe. This is304

demonstrated here in the particular case of a rarefaction wave split in two305

pieces.306

When representing a rarefaction through a unique wave λ̃ at interface307

i+ 1/2, the quantity (νγẽ)i+1/2 =
λ̃i+1/2∆t

∆x
(γẽ)i+1/2 is sent. The aim of the308

splitting is originating two waves, λ̃a
i+1/2 and λ̃b

i+1/2, that, in order to be309

conservative verify310

λ̃i+1/2∆t

∆x
(γẽ)i+1/2 =

λ̃a
i+1/2∆t

∆x
(γaẽ)i+1/2 +

λ̃b
i+1/2∆t

∆x
(γbẽ)i+1/2 (69)

Therefore enforcing311

(λ̃γ)i+1/2 = (λ̃aγa)i+1/2 + (λ̃bγb)i+1/2 (70)

According to (70), the definition of γa
i+1/2 and γb

i+1/2 follows312

γa
i+1/2 = γi+1/2

(
λ̃b − λ̃

λ̃b − λ̃a

)

i+1/2

γb
i+1/2 = γi+1/2

(
λ̃− λ̃a

λ̃b − λ̃a

)

i+1/2

(71)

There is some freedom for the choice of λ̃a
i+1/2 and λ̃b

i+1/2 for example,313

they could be defined as follows:314

λ̃a
i+1/2 = ε (λi + λ̃i+1/2) λ̃b

i+1/2 = (1− ε) (λi+1 + λ̃i+1/2) (72)

where ε is a free parameter. In this case, ε = 0.5 has been chosen. The315

number of pieces Np that the rarefaction is split into is again related with316

the wave strength. In this work, the choice is related with the integer part317

of
γi+1/2 ∆t

∆x
.318

In order to see the performance of this technique when dealing with a319

rarefaction, a flat frictionless rectangular channel 100 m long, 1 m wide,320

with initial conditions of zero velocity and a discontinuity in the water level321

surface322
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h(x, t = 0) =

{
4m if x < 50m
1m if x > 50m

(73)

is considered. Two numerical solutions using the LTS scheme computed323

with CFL=5.0 and ∆x = 1.0m are compared with the exact solution (—–).324

The results from the LTS scheme with rarefaction splitting are plotted using325

(− • −), those from the LTS without splitting are plotted using (− ◦ −) in326

Figure 17 (a) and (b) for the water depth and discharge respectively after327

t = 3s. Although oscillations appear in the presence of the shock wave in328

both numerical solutions, the LTS scheme using the split rarefactions is more329

accurate than the LTS scheme without the splitting treatment.330
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Figure 17: (a) Exact (—–) and numerical solutions at t = 3s for (a) the height, and (b)
the discharge using splitting (− • −) and no splitting (− ◦ −) rarefaction treatment

4.3. Boundary conditions331

The boundary conditions dicretization is another issue of importance and332

requires a careful consideration. In the context of the shallow water equa-333

tions, open boundaries and closed boundaries can appear and are going to334

be analyzed.335

In the case of open boundaries, two flow situations can be distinguished: sub-336

critical and supercritical. When dealing with a supercritical outlet boundary,337

no external information is required. In fact, the boundary cell receives the338

information coming from the inner cells according to the scheme provided339

in (59) and (60). If some of the contributions cross the boundary they are340

stored at inlet and outlet ’bags’ in order to control conservation but they do341

not affect the updated solution of the boundary cell (Figure 18).342
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N-1 N

Outlet bag

Figure 18: Open boundaries in the LTS scheme

In case of having subcritical inlet or outlet boundary, one variable is343

externally imposed as physical boundary conditions and the other variable is344

calculated using the updating information arriving from the inner interfaces.345

Also some of the contributions cross the boundary, so they are stored as in346

the supercritical case.347

At closed boundaries, two possible techniques are proposed: an accu-348

mulation technique and a reflection technique. Consider the downstream349

boundary at node N (the reasoning for the upstream boundary is analogous)350

and the information from edge i+1/2 (λ̃i+1/2 > 0). If i + µi+1/2 + 1 > N ,351

some of the contributions from i+1/2 go out of the downstream end of the352

domain. As the solid wall condition requires that no information crosses353

the boundary and the method must remain conservative, the accumulation354

technique stores these contributions at the downstream boundary cell N as355

shown in Figure 19 (a). On the other hand, the reflection technique considers356

the downstream outlet edge as a mirror, sending the information that would357

cross the boundary back to the corresponding cell. It can be seen in Figure358

19 (b).359

(a) N-2 N-1 N (b)
N-1 N

Figure 19: Boundary treatment: (a) Accumulation technique and (b) Reflection technique
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The reflection technique is preferred here because the LTS scheme using360

very large CFL numbers in closed boundaries could lead the boundary cells361

to accumulate excessive information in a time step producing oscillations and362

non-physical situations. In order to justify this choice, the same dambreak363

problem proposed in (73) is used considering solid walls at x = 0 m and at364

x = 100 m. After several seconds the shock and the rarefaction waves arrive365

to the end of the domain and rebound. The numerical solutions with the LTS366

scheme are computed again with CFL=5.0 and ∆x = 1.0m. The two ways367

of dealing with the closed boundaries, accumulation (− ◦ −) and reflection368

(− • −) technique are compared with the exact solution (—–) at t=10.5s369

(Figure 20 (a) for the height and (b) for the discharge) and at t=16.5s (Figure370

21 (a) for the height and (b) for the discharge). The results highlight that the371

reflection technique achieves more accurate solutions than the accumulation372

technique mainly near the time when the waves collide with the solid walls.373

After the reflection, the two techniques provide similar results.374
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Figure 20: (Exact (—–) and numerical solutions at t = 10.5s for (a) the depth, and (b)
the discharge using the accumulation (− ◦ −) and reflection (− • −) technique

4.4. Entropy fix, source terms and the CFL limit375

The LTS scheme formulated in this work is actually an alteration of the376

basic Roe scheme where larger CFL values can be used. As it is well known,377

the basic explicit scheme requires some kind of correction in order to avoid378

non-physical situations near sonic points. This correction, called entropy fix,379

must also be applied in the proposed LTS scheme. In this work, the version380

of the Harten-Hyman entropy fix [13] has been adopted.381

An upwind discretization for the source term related not only with the382

bed slope but also with the friction term is adopted according to [12] . This383
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Figure 21: (Exact (—–) and numerical solutions at t = 16.5s for (a) the depth, and (b)
the discharge using the accumulation (− ◦ −) and reflection (− • −) technique

treatment is able to satisfy the preservation of steady-states such as still384

water equilibrium in the context of the shallow water equations providing385

discrete evaluations of the source term that ensure energy dissipating solu-386

tions when demanded. Also the wet/dry front has been formulated following387

[12], avoiding the appearance of negative values of water depth.388

A more accurate estimation of the waves celerities in presence of strong389

source terms or big discontinuities could be based on the three RH condi-390

tions associated to the approximate solution from (52) according to the idea391

suggested in the non-linear scalar case. However, due to the mutual depen-392

dence between the waves celerities and the intermediate states U∗ and U∗∗,393

there is not a simple or straightforward procedure [16] to achieve an accurate394

solution at very high CFL numbers (associated to only one or two time steps395

in total). Therefore, instead of seeking a correction in the waves speeds in396

presence of strong source terms or big discontinuities, the present work is fo-397

cused on applying a reduction on the CFL value. This is next explained. A398

parameter that includes the influence not only of the size of the discontinuity399

in the solution but also of the initial values is considered as proposed in [10]:400

ξ1 =
mini{|Ui|, |Ui+1|, |δUi+1/2|}

|δUi+1/2|
1 ≤ i ≤ N (74)

where 0 ≤ ξ1 ≤ 1. Also, a second parameter ξ2 is defined incorporating the401

equivalent influence of the bed slope source term as follows:402

ξ2 =
mini{|di|, |di+1|, |δdi+1/2|}

|δdi+1/2|
1 ≤ i ≤ N (75)
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where 0 ≤ ξ2 ≤ 1 and d = h + z is the water surface level. Let ξ be the403

minimum of these two parameters,404

ξ = min(ξ1, ξ2) (76)

If U or d are gradually varied functions, ξ = 1 and the CFL value is not405

necessary to be diminished. Otherwise, a reduction in the CFL initial value,406

i.e., in the time step, is required in order to achieve a good solution. In this407

work, the value ξ = 0.25 is proposed as a limit. Under this value, the CFL408

number will be reduced to 1.0 recovering the original Roe’s method and over409

this value, a linear interpolation between 1.0 and the CFL number chosen410

initially according to the parameter ξ is submitted. Therefore, the final CFL411

value (CFLl) can be expressed as follows:412

CFLl =

{
1.0 if ξ ≤ 0.25

1.0 +
CFL− 1.0

0.75
(ξ − 0.25) if ξ > 0.25

(77)

An alternative way to proceed could be establishing the limit in ξ = 1.0.413

Under this number the CFL value will be reduced to 1.0. Also in the case414

where flow regime transitions occurs (mainly in hydraulic jumps) the CFL415

number is reduced to ensure the correct solution of the problem.416

4.5. Test cases417

4.5.1. Application to steady flow with source terms418

MacDonald et al. [17] supplied a set of realistic open channel flow test419

cases with analytical solution very well suited to validate the numerical420

schemes. Three examples from [18] are used here. They both apply a Man-421

ning friction coefficient n = 0.03, have been simulated with ∆x = 1.0 and422

the inlet discharge is 20 m3/s. In test case 1 the flow is subcritical all along423

the 150 m length and the 10 m wide rectangular channel. The downstream424

boundary condition is a fixed height. The steady water depth is:425

h(x) = 0.8 + 0.25 exp

(
33.75

( x

150
− 1/2

)2)
(78)

Test case 2 corresponds to a trapezoidal channel with 10 m bottom width426

and 200 m length. The side slope of the channel is 2, and there is not down-427

stream boundary condition. Hence, a smooth transition between subcritical428
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flow upstream (at the first half of the reach) and supercritical flow down-429

stream (at the second half) takes place. Here, the steady water depth is430

expressed as follows:431

h(x) = 0.706033− 0.25 tanh

(
x− 100

50

)
(79)

In test case 3, the 10 m wide rectangular channel steepens and then432

flattens out again along the 150 m lenght. The solutions changes smoothly433

from subcritical flow to supercritical flow at x = 50m. After it return via a434

hydraulic jump to subcritical flow at x = 100m. The downstream boundary435

condition is a fixed height of 1.700225 m and the steady water depth is:436

h(x) = 0.741617− 0.25

tanh(3)
tanh

(
3
x− 50

50

)
(80)

The results for these test cases can be observed in Figures 22, 23 and 24437

where the numerical solution using CFL = 60.0 (−◦−) is compared with the438

exact solution (—–). Also the bed level is represented in dashed line. The439

results indicate that the LTS scheme is really valid for computing steady440

states with very large CFL numbers only accessible for the implicit methods.441
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Figure 22: Exact (—–) and numerical (− ◦ −) solution for Macdonald’s test case 1
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Figure 23: Exact (—–) and numerical (− ◦ −) solution for Macdonald’s test case 2
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Figure 24: Exact (—–) and numerical (− ◦ −) solution for Macdonald’s test case 3

The CFL limiter presented before is also activated in order to ensure the442

correct solution of the numerical approach. Figure 25 provides the informa-443

tion about the evolution of the time step in each test case. The time step444

value using CFL=1.0 in the test case 1 is near 0.18 in comparison with the445
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LTS scheme using CFL=60.0 where the time step value is near 8.91. In the446

second test case, the time step using CFL 1.0 is near 0.16 whereas using447

CFL=60.0, after several oscillations related with the CFL limiter and the448

smooth transition, arrives to 7.95 approximately. In test case 3 a hydraulic449

jump occurs, and the CFL value is suddenly limited to 2.0, so there is no450

much difference between the time step in the LTS scheme using CFL=60.0451

(the actual CFL value used is near 2.0) and the conventional explicit upwind452

method with CFL=1.0.453
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Figure 25: Evolution of the time step: (a) test case 1, (b) test case 2 and (c) test case 3

4.5.2. Application to unsteady flow: dambreak problem with source terms454

The unsteady flow induced by and ideal dambreak is the most widely used455

test case for numerical schemes of the kind considered here. Combining it456

with large source terms represented by discontinuous bed becomes a powerful457

tool to evaluate how robust and accurate a numerical scheme can be. The458
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results are going to be presented as follows: the numerical solution provided459

by the LTS scheme with CFL=5.0 (− • −) is compared with the numerical460

solution obtained with the CUE scheme with CFL=1.0 (−◦−) and also with461

the exact solution of each problem (—). The geometry of all of them is a462

rectangular frictionless 1 km long channel with a bottom step at x = 0 and463

a variable height at each side of the bed discontinuity. All of this test cases464

are included in [12] and more information about the nature and the exact465

solution of them can be found there.466

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-25 -20 -15 -10 -5  0  5  10  15  20

le
ve

l(m
)

x(m)

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

-25 -20 -15 -10 -5  0  5  10  15  20

di
sc

ha
rg

e(
m

3/
s)

x(m)

Figure 26: Test case 1: exact (—) and numerical solutions at t = 5s using CFL=1.0 (−◦−)
and CFL=5.0 (− • −) for (a) the water level surface, and (b) the discharge
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Figure 27: Test case 2: exact (—) and numerical solutions at t = 5s using CFL=1.0 (−◦−)
and CFL=5.0 (− • −) for (a) the water level surface, and (b) the discharge

All the test cases computed here are summarised in Table 3. The test467

cases chosen do not include wet/dry front since, in those cases, the LTS468

simply reduces to the CUE scheme.469
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The numerical solutions are calculated with g = 9.8 m2/s, the accele-470

ration due to the gravity, and ∆x = 1.0. Also, for the numerical solution471

provided by the LTS scheme, the parameter ξ in (76) using to reduce the472

time step at big discontinuities has been applied.473

The results are presented in the form of plots of the water level surface and474

discharge for each test case (Figures 26–31). The topography is represented475

in dashed line.476

Table 3: Summary of test cases.

Test Case hL hR uL uR zL zR
1 1.0 0.30179953 0.0 0.0 0.0 0.05
2 4.0 0.50537954 0.1 0.0 0.0 1.5
3 2.5 2.49977381 1.5 0.0 0.0 0.25
4 1.5 0.16664757 2.0 0.0 0.0 2.0
5 1.0 0.04112267 0.2 0.0 0.25 0.0
6 0.6 0.02599708 0.35 0.0 1.2 0.0
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Figure 28: Test case 3: exact (—) and numerical solutions at t = 5s using CFL=1.0 (−◦−)
and CFL=5.0 (− • −) for (a) the water level surface, and (b) the discharge

The test cases proposed here are really extreme cases where the source477

term plays a leading role. Also discontinuities in the initial height and dis-478

charge make these situations in fact suitable to examine the power of a nu-479

merical method.480

The results provided by the LTS scheme are as good or more accurate than481

those from the CUE scheme. As the time steps are larger, less of them are482
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Figure 29: Test case 4: exact (—) and numerical solutions at t = 5s using CFL=1.0 (−◦−)
and CFL=5.0 (− • −) for (a) the water level surface, and (b) the discharge
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Figure 30: Test case 5: exact (—) and numerical solutions at t = 5s using CFL=1.0 (−◦−)
and CFL=5.0 (− • −) for (a) the water level surface, and (b) the discharge

(a)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

-20 -10  0  10  20  30

le
ve

l(m
)

x(m)

(b)

 0

 0.2

 0.4

 0.6

 0.8

-20 -10  0  10  20  30

di
sc

ha
rg

e(
m

3/
s)

x(m)

Figure 31: Test case 6: exact (—) and numerical solutions at t = 5s using CFL=1.0 (−◦−)
and CFL=5.0 (− • −) for (a) the water level surface, and (b) the discharge

35



necessary to compute the numerical solution, so it is less diffusive. Moreover,483

the influence of ξ is presented above all in test cases 4, 5 and 6 where this484

parameter is frequently less than 1 (and generally less also than 0.25). The485

aim of the parameter ξ is to detect when a strong discontinuity or large486

source term are present and to be able to generalise the LTS scheme. The487

examples show that in the extreme test cases, the CFL number is reduced488

when a large discontinuity is present. For all test cases the number of time489

steps necessary to compute the numerical solution is indicated in Table 4.490

Figure 32(a) and (b) shows also the evolution of the time step for test case491

1,2,3 and 4,5,6 respectively using the LTS and CUE scheme. The shading492

symbols represents the conventional upwind explicit scheme and the empty493

symbols the LTS scheme.494

Test case LTS scheme CUE scheme
1 5 19
2 12 34
3 8 33
4 30 30
5 19 25
6 16 20

Table 4: Time steps done by each numerical method
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Figure 32: Evolution of the time step (a) for test cases 1, 2, 3 and (b) for test cases 4, 5, 6
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5. Conclusions495

In this paper, an extension of the large time step (LTS) scheme devel-496

oped by Leveque has been presented in order to complete and generalise this497

method first for scalar equations and then for the shallow water equations498

with source terms.499

The proposed LTS scheme, when applied to non-linear scalar cases, re-500

quires the discrete representation of the rarefaction wave in the form of several501

discontinuities travelling at different speeds if an accurate solution is sought502

at large CFL values. A simple rule to estimate these speeds has been pro-503

posed. When incorporating the presence of a source term in non-linear scalar504

equations, the LTS scheme can be easily extended following the same proce-505

dure as in the homogeneous case provided that the original explicit scheme506

was already well-balanced. However, it is important to remark that the qual-507

ity of the numerical solution deteriorates as the CFL grows in presence of508

relatively important source terms due to the fact that the scheme is based509

on the advection speed of the homogeneous system. The inviscid Burgers510

equation with source term has been used to propose a second estimation of511

the advection speed that takes into account the presence of the source term512

in the form of an intermediate state. The effectiveness of this treatment has513

been illustrated for the Burgers equation with source term achieving accurate514

numerical solutions in a single time step.515

The extension to non-linear systems of equations with source terms has516

been explored and applied to the 1D shallow water system. The splitting517

technique required in rarefactions has been extended to systems and shown to518

produce good results that preserve conservation. The bed slope and friction519

source terms have been incorporated in a compact formulation with a three520

wave approximate solution taking into account one extra wave associated521

with the source term according to previous work. From that formulation of522

the well-balanced explicit scheme, the extension leading to the LTS scheme523

has been possible. In the case of systems, the LTS shows a good performance524

for CFL>1 but, as in the scalar case, the solution is worse as the CFL525

grows in presence of strong discontinuities and/or relatively important source526

terms. Looking for a compromise between accuracy and efficiency in the527

method, instead of devising a complex procedure to improve the estimation528

of the advection speeds in presence of strong discontinuities and/or relatively529

important source terms, a new parameter ξ is proposed in order to detect530

these situations and to reduce accordingly the target CFL number chosen531

37



initially.532

The treatment of the boundary conditions at open and closed boundaries533

has been explored and two possible techniques are provided for the second534

case. Among them, the reflection technique, that sends back the information535

that would cross the boundary when using large CFL values, is recommended536

in the case of close boundaries. At open boundaries, no special treatment537

is required for the information going out of the computational domain apart538

from the logical control of the conservation.539

With the proposed modifications, the LTS scheme has been used to re-540

produce all kind of flow conditions. Its performance has been illustrated541

using test cases with exact solution of steady and unsteady open channel542

flow problems. In the steady open channel flow test cases, the LTS scheme543

has proved efficient and accurate allowing the use of very high CFL values.544

The technique proposed to control the size of the CFL in presence of dis-545

continuities has been effective in the steady flow problems with hydraulic546

jump. A series of frictionless dam break problem with all kind of discontin-547

uous bed level have been used as validation test cases. Again, the LTS has548

been supplied with the parameter dynamically controlling the appearance of549

strong discontinuities and/or important source terms that has been able to550

adjust accordingly the maximum allowable CFL value to produce accurate551

and stable numerical solutions.552

Finally, this LTS scheme is an explicit method, and the advantages related553

with this kind of schemes are conserved. Moreover, the CFL condition is554

relaxed and larger time steps can be used, so that a computational gain and555

less diffusive results can be achieved in most cases. The obtained results point556

out that the LTS scheme is able to predict faithfully the overall behaviour of557

the solution and of any type of waves.558
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