10,148 research outputs found
A low background Micromegas detector for the CAST experiment
A low background Micromegas detector has been operating on the CAST
experiment at CERN for the search of solar axions during the first phase of the
experiment (2002-2004). The detector operated efficiently and achieved a very
low level of background rejection ( counts
keVcms) thanks to its good spatial and energy resolution
as well as the low radioactivity materials used in the construction of the
detector. For the second phase of the experiment (2005-2007), the detector will
be upgraded by adding a shielding and including focusing optics. These
improvements should allow for a background rejection better than two orders of
magnitude.Comment: 6 pages, 3 figures To appear on the proceedings of the 9th ICATPP
Conference on AStroparticle, Particle, Space Physics, Detectors and Medical
Physics Application
Progress on a spherical TPC for low energy neutrino detection
The new concept of the spherical TPC aims at relatively large target masses
with low threshold and background, keeping an extremely simple and robust
operation. Such a device would open the way to detect the neutrino-nucleus
interaction, which, although a standard process, remains undetected due to the
low energy of the neutrino-induced nuclear recoils. The progress in the
development of the fist 1 m prototype at Saclay is presented. Other physics
goals of such a device could include supernova detection, low energy neutrino
oscillations and study of non-standard properties of the neutrino, among
others.Comment: 3 pages, talk given at the 9th Workshop on Topics in Astroparticle
and Underground Physics, Zaragoza, September 10-1
Recent results from the canfranc dark matter search with germanium detectors
Two germanium detectors are currently operating in the Canfranc Underground
Laboratory at 2450 m.w.e looking for WIMP dark matter. One is a 2 kg 76Ge IGEX
detector (RG-2) which has an energy threshold of 4 keV and a low-energy
background rate of about 0.3 c/keV/kg/day. The other is a small (234 g) natural
abundance Ge detector (COSME), of low energy threshold (2.5 keV) and an energy
resolution of 0.4 keV at 10 keV which is looking for WIMPs and for solar
axions. The analysis of 73 kg-days of data taken by COSME in a search for solar
axions via their photon Primakoff conversion and Bragg scattering in the Ge
crystal yields a 95% C.L. limit for the axion-photon coupling g < 2.8 10^-9
GeV^-1. These data, analyzed for WIMP searches provide an exclusion plot for
WIMP-nucleon spin-independent interaction which improves previous plots in the
low mass region. On the other hand, the exclusion plot derived from the 60
kg-days of data from the RG-2 IGEX detector improves the exclusion limits
derived from other ionization (non thermal) germanium detector experiments in
the region of WIMP masses from 30 to 100 GeV recently singled out by the
reported DAMA annual modulation effect.Comment: 6 pages, talk given at IDM2000, York, September 200
Domain walls in three dimensional gauged supergravity
We explicitly construct two Chern-Simons gauged supergravities in three
dimensions with N=4 and N=8 supersymmetries and non-semisimple gauge groups.
The N=4 theory has scalar manifold with the gauge
group . The theory describes
(1,0) six dimensional supergravity reduced on an SU(2) group manifold. The
equivalent Yang-Mills type gauged supergravity has SO(3) gauge group coupled to
three massive vector fields. The N=8 theory is described by
scalar manifold, and the gauge group is given by
. The theory is a truncation of the gauged N=16 theory with scalar manifold and
can be obtained by an S^7 compactification of type I theory in ten dimensions.
Domain wall solutions of both gauged supergravities are analytically found and
can be uplifted to higher dimensions. These provide domain wall vacua in the
three dimensional gauged supergravity framework which might be useful for the
study of Domain Wall/QFT correspondence.Comment: 19 pages, no figures, typoes and a mistake in a sign corrected,
clarifications on the notations adde
The Micromegas detector of the CAST experiment
A low background Micromegas detector has been operating in the CAST
experiment at CERN for the search of solar axions during the first phase of the
experiment (2002-2004). The detector, made out of low radioactivity materials,
operated efficiently and achieved a very low level of background rejection (5 x
10^-5 counts/keV/cm^2/s) without shielding.Comment: 13 pages, 12 figures and images, submitted to New Journal o
Exploring the circumstellar environment of the young eruptive star V2492 Cyg
Context. V2492 Cyg is a young eruptive star that went into outburst in 2010.
The near-infrared color changes observed since the outburst peak suggest that
the source belongs to a newly defined sub-class of young eruptive stars, where
time-dependent accretion and variable line-of-sight extinction play a combined
role in the flux changes.
Aims. In order to learn about the origin of the light variations and to
explore the circumstellar and interstellar environment of V2492 Cyg, we
monitored the source at ten different wavelengths, between 0.55 \mu m and 2.2
\mu m from the ground and between 3.6 \mu m and 160 \mu m from space.
Methods. We analyze the light curves and study the color-color diagrams via
comparison with the standard reddening path. We examine the structure of the
molecular cloud hosting V2492 Cyg by computing temperature and optical depth
maps from the far-infrared data.
Results. We find that the shapes of the light curves at different wavelengths
are strictly self-similar and that the observed variability is related to a
single physical process, most likely variable extinction. We suggest that the
central source is episodically occulted by a dense dust cloud in the inner
disk, and, based on the invariability of the far-infrared fluxes, we propose
that it is a long-lived rather than a transient structure. In some respects,
V2492 Cyg can be regarded as a young, embedded analog of UX Orionis-type stars.
Conclusions. The example of V2492 Cyg demonstrates that the light variations
of young eruptive stars are not exclusively related to changing accretion. The
variability provided information on an azimuthally asymmetric structural
element in the inner disk. Such an asymmetric density distribution in the
terrestrial zone may also have consequences for the initial conditions of
planet formation.Comment: 9 pages, 7 figures, 2 online tables, accepted for publication in A&
Eleven-dimensional massless superparticles and matrix theory spin-orbit couplings revisited
The classical probe dynamics of the eleven-dimensional massless
superparticles in the background geometry produced by N source M-momenta is
investigated in the framework of N-sector DLCQ supergravity. We expand the
probe action up to the two fermion terms and find that the fermionic
contributions are the spin-orbit couplings, which precisely agree with the
matrix theory calculations. We comment on the lack of non-perturbative
corrections in the one-loop matrix quantum mechanics effective action and its
compatibility with the supergravity analysis.Comment: 11 pages, Latex, no figure
Comment on "Evidence for Neutrinoless Double Beta Decay"
We comment on the recent claim for the experimental observation of
neutrinoless double-beta decay. We discuss several limitations in the analysis
provided in that paper and conclude that there is no basis for the presented
claim.Comment: A comment written to Modern Physics Letters A. 4 pages, no figures.
Updated version, accepted for publicatio
Solar axion search with the CAST experiment
The CAST (CERN Axion Solar Telescope) experiment is searching for solar
axions by their conversion into photons inside the magnet pipe of an LHC
dipole. The analysis of the data recorded during the first phase of the
experiment with vacuum in the magnet pipes has resulted in the most restrictive
experimental limit on the coupling constant of axions to photons. In the second
phase, CAST is operating with a buffer gas inside the magnet pipes in order to
extent the sensitivity of the experiment to higher axion masses. We will
present the first results on the data taking as well as the
system upgrades that have been operated in the last year in order to adapt the
experiment for the data taking. Expected sensitivities on the
coupling constant of axions to photons will be given for the recent run just started in March 2008.Comment: Proceedings of the ICHEP 2008 conferenc
Results and perspectives of the solar axion search with the CAST experiment
The status of the solar axion search with the CERN Axion Solar Telescope
(CAST) will be presented. Recent results obtained by the use of He as a
buffer gas has allowed us to extend our sensitivity to higher axion masses than
our previous measurements with He. With about 1 h of data taking at each of
252 different pressure settings we have scanned the axion mass range 0.39 eV 0.64 eV. From the absence of an excess of x rays when the
magnet was pointing to the Sun we set a typical upper limit on the axion-photon
coupling of g GeV at 95% C.L., the
exact value depending on the pressure setting. CAST published results represent
the best experimental limit on the photon couplings to axions and other similar
exotic particles dubbed WISPs (Weakly Interacting Slim Particles) in the
considered mass range and for the first time the limit enters the region
favored by QCD axion models. Preliminary sensitivities for axion masses up to
1.16 eV will also be shown reaching mean upper limits on the axion-photon
coupling of g GeV at 95% C.L.
Expected sensibilities for the extension of the CAST program up to 2014 will be
presented. Moreover long term options for a new helioscope experiment will be
evoked.Comment: 4 pages, 2 pages, to appear in the proceedings of the 24th Rencontres
de Blois V2 A few affiliations were not corrected in previous version V3
Author adde
- …