20,855 research outputs found

    Spatially resolving the thermally inhomogeneous outer atmosphere of the red giant Arcturus in the 2.3 micron CO lines

    Full text link
    The outer atmosphere of K giants shows thermally inhomogeneous structures consisting of the hot chromospheric gas and the cool molecular gas. We present spectro-interferometric observations of the multicomponent outer atmosphere of the well-studied K1.5 giant Arcturus (alpha Boo) in the CO first overtone lines near 2.3 micron. We observed Arcturus with the AMBER instrument at the Very Large Telescope Interferometer (VLTI) at 2.28--2.31 micron with a spectral resolution of 12000 and at projected baselines of 7.3, 14.6, and 21.8 m. The high spectral resolution of the VLTI/AMBER instrument allowed us to spatially resolve Arcturus in the individual CO lines. Comparison of the observed interferometric data with the MARCS photospheric model shows that the star appears to be significantly larger than predicted by the model. It indicates the presence of an extended component that is not accounted for by the current photospheric models for this well-studied star. We found out that the observed AMBER data can be explained by a model with two additional CO layers above the photosphere. The inner CO layer is located just above the photosphere, at 1.04 +/- 0.02 stellar radii, with a temperature of 1600 +/- 400 K and a CO column density of 10^{20 +/- 0.3} cm^-2. On the other hand, the outer CO layer is found to be as extended as to 2.6 +/- 0.2 stellar radii with a temperature of 1800 +/- 100 K and a CO column density of 10^{19 +/- 0.15} cm^-2. The properties of the inner CO layer are in broad agreement with those previously inferred from the spatially unresolved spectroscopic analyses. However, our AMBER observations have revealed that the quasi-static cool molecular component extends out to 2--3 stellar radii, within which region the chromospheric wind steeply accelerates.Comment: 10 pages, 9 figures, accepted for publication in Astronomy and Astrophysic

    On the perturbative corrections around D-string instantons

    Get PDF
    We study F4{\cal F}^4-threshold corrections in an eight dimensional S-dual pair of string theories, as a prototype of dual string vacua with sixteen supercharges. We show that the orbifold CFT description of D-string instantons gives rise to a perturbative expansion similar to the one appearing on the fundamental string side. By an explicit calculation, using the Nambu-Goto action in the static gauge, we show that the first subleading term agrees precisely on the two sides. We then give a general argument to show that the agreement extends to all orders.Comment: 12 page

    Rotational properties of the binary and non-binary populations in the Trans-Neptunian belt

    Full text link
    We present results for the short-term variability of Binary Trans-Neptunian Objects (BTNOs). We performed CCD photometric observations using the 3.58 m Telescopio Nazionale Galileo, the 1.5 m Sierra Nevada Observatory telescope, and the 1.23 m Centro Astronomico Hispano Aleman telescope at Calar Alto Observatory. We present results based on five years of observations and report the short-term variability of six BTNOs. Our sample contains three classical objects: 2003MW12, or Varda, 2004SB60, or Salacia, and 2002 VT130; one detached disk object: 2007UK126; and two resonant objects: 2007TY430 and 2000EB173, or Huya. For each target, possible rotational periods and/or photometric amplitudes are reported. We also derived some physical properties from their lightcurves, such as density, primary and secondary sizes, and albedo. We compiled and analyzed a vast lightcurve database for Trans-Neptunian Objects (TNOs) including centaurs to determine the lightcurve amplitude and spin frequency distributions for the binary and non-binary populations. The mean rotational periods, from the Maxwellian fits to the frequency distributions, are 8.63+/-0.52 h for the entire sample, 8.37+/-0.58 h for the sample without the binary population, and 10.11+/-1.19 h for the binary population alone. Because the centaurs are collisionally more evolved, their rotational periods might not be so primordial. We computed a mean rotational period, from the Maxwellian fit, of 8.86+/-0.58 h for the sample without the centaur population, and of 8.64+/-0.67 h considering a sample without the binary and the centaur populations. According to this analysis, regular TNOs spin faster than binaries, which is compatible with the tidal interaction of the binaries. Finally, we examined possible formation models for several systems studied in this work and by our team in previous papers.Comment: Accepted for publication in Astronomy and Astrophysics (June 26th, 2014); minor changes with published version; 21 pages, 17 figures, 7 table

    AdS/CFT correspondence and D1/D5 systems in theories with 16 supercharges

    Get PDF
    We discuss spectra of AdS3AdS_3 supergravities, arising in the near horizon geometry of D1/D5 systems in orbifolds/orientifolds of type IIB theory with 16 supercharges. These include models studied in a recent paper (hep-th/0012118), where the group action involves also a shift along a transversal circle, as well as IIB/ΩI4\Omega I_4, which is dual to IIB on K3K3. After appropriate assignements of the orbifold group eigenvalues and degrees to the supergravity single particle spectrum, we compute the supergravity elliptic genus and find agreement, in the expected regime of validity, with the elliptic genus obtained using U-duality map from (4,4) CFTs of U-dual backgrounds. Since this U-duality involves the exchange of KK momentum PP and D1 charge NN, it allows us to test the (4,4) CFTs in the P<N/4P < N/4 and N<P/4N < P/4 regimes by two different supergravity duals.Comment: 28 pages, no figure

    The Benefits of Peer Review and a Multisemester Capstone Writing Series on Inquiry and Analysis Skills in an Undergraduate Thesis.

    Get PDF
    This study examines the relationship between the introduction of a four-course writing-intensive capstone series and improvement in inquiry and analysis skills of biology senior undergraduates. To measure the impact of the multicourse write-to-learn and peer-review pedagogy on student performance, we used a modified Valid Assessment of Learning in Undergraduate Education rubric for Inquiry and Analysis and Written Communication to score senior research theses from 2006 to 2008 (pretreatment) and 2009 to 2013 (intervention). A Fisher-Freeman-Halton test and a two-sample Student's t test were used to evaluate individual rubric dimensions and composite rubric scores, respectively, and a randomized complete block design analysis of variance was carried out on composite scores to examine the impact of the intervention across ethnicity, legacy (e.g., first-generation status), and research laboratory. The results show an increase in student performance in rubric scoring categories most closely associated with science literacy and critical-thinking skills, in addition to gains in students' writing abilities

    Common Warm Dust Temperatures Around Main-sequence Stars

    Get PDF
    We compare the properties of warm dust emission from a sample of main-sequence A-type stars (B8-A7) to those of dust around solar-type stars (F5-K0) with similar Spitzer Space Telescope Infrared Spectrograph/MIPS data and similar ages. Both samples include stars with sources with infrared spectral energy distributions that show evidence of multiple components. Over the range of stellar types considered, we obtain nearly the same characteristic dust temperatures (~190 K and ~60 K for the inner and outer dust components, respectively)—slightly above the ice evaporation temperature for the inner belts. The warm inner dust temperature is readily explained if populations of small grains are being released by sublimation of ice from icy planetesimals. Evaporation of low-eccentricity icy bodies at ~150 K can deposit particles into an inner/warm belt, where the small grains are heated to T_(dust)~ 190 K. Alternatively, enhanced collisional processing of an asteroid belt-like system of parent planetesimals just interior to the snow line may account for the observed uniformity in dust temperature. The similarity in temperature of the warmer dust across our B8-K0 stellar sample strongly suggests that dust-producing planetesimals are not found at similar radial locations around all stars, but that dust production is favored at a characteristic temperature horizon
    • …
    corecore