431 research outputs found

    Interaction Induced Quantum Valley Hall Effect in Graphene

    Get PDF
    We use Pseudo Quantum Electrodynamics (PQED) in order to describe the full electromagnetic interaction of the p-electrons of graphene in a consistent 2D formulation. We first consider the effect of this interaction in the vacuum polarization tensor or, equivalently, in the current correlator. This allows us to obtain the dc conductivity after a smooth zero-frequency limit is taken in Kubo's formula.Thereby, we obtain the usual expression for the minimal conductivity plus corrections due to the interaction that bring it closer to the experimental value. We then predict the onset of an interaction-driven spontaneous Quantum Valley Hall effect (QVHE) below a critical temperature of the order of 0.050.05 K. The transverse (Hall) valley conductivity is evaluated exactly and shown to coincide with the one in the usual Quantum Hall effect. Finally, by considering the effects of PQED, we show that the electron self-energy is such that a set of P- and T- symmetric gapped electron energy eigenstates are dynamically generated, in association with the QVHE.Comment: 5 pages + supplemental materia

    Spin g-factor due to electronic interactions in graphene

    Full text link
    The gyromagnetic factor is an important physical quantity relating the magnetic-dipole moment of a particle to its spin. The electron spin g-factor in vacuo is one of the best model-based theoretical predictions ever made, showing agreement with the measured value up to ten parts per trillion. However, for electrons in a material the g-factor is modified with respect to its value in vacuo because of environment interactions. Here, we show how interaction effects lead to the spin g-factor correction in graphene by considering the full electromagnetic interaction in the framework of pseudo-QED. We compare our theoretical prediction with experiments performed on graphene deposited on SiO2 and SiC, and we find a very good agreement between them.Comment: Improved version of the manuscript; valley g-factor part has been remove

    Life cycle assessment of soybean biodiesel and LPG as automotive fuels in Portugal

    Get PDF
    This study aims to compare soy methyl esters (biodiesel) and liquefied petroleum gas (LPG) as automotive fuels in Portugal using LCA. The potential environmental impacts (PEl) associated with their life cycles are compared for twelve impact categories. As a general conclusion biodiesel has a lower total PEl than LPG. Nonetheless biodiesel shows higher values of some individual impact categories such as acidification, photooxidant formation, terrestrial eutrophication, and land use. This study results can be used to support decision making and recommendations about the environmentally preferable fuel to be used in Portugal, which should be complemented with economic and societal considerations

    The influence of a weak magnetic field in the Renormalization-Group functions of (2+1)-dimensional Dirac systems

    Get PDF
    The experimental observation of the renormalization of the Fermi velocity vFv_{F} as a function of doping has been a landmark for confirming the importance of electronic interactions in graphene. Although the experiments were performed in the presence of a perpendicular magnetic field BB, the measurements are well described by a renormalization-group (RG) theory that did not include it. Here we clarify this issue, for both massive and massless Dirac systems, and show that for the weak magnetic fields at which the experiments are performed, there is no change in the renormalization-group functions. Our calculations are carried out in the framework of the Pseudo-quantum electrodynamics (PQED) formalism, which accounts for dynamical interactions. We include only the linear dependence in BB, and solve the problem using two different parametrizations, the Feynman and the Schwinger one. We confirm the results obtained earlier within the RG procedure and show that, within linear order in the magnetic field, the only contribution to the renormalization of the Fermi velocity arises due to interactions. In addition, for gapped systems, we observe a running of the mass parameter.Comment: Discussion about the fermionic mass has been added to the previous versio

    Habitat and community structure modulate fish interactions in a neotropical clearwater river

    Get PDF
    Species interactions can modulate the diversity and enhance the stability of biological communities in aquatic ecosystems. Despite previous efforts to describe fish interactions in tropical rivers, the role of habitat characteristics, community structure, and trophic traits over these interactions is still poorly understood. To investigate among-habitat variation in substratum feeding pressure and agonistic interactions between fishes, we used remote underwater videos in three habitats of a clearwater river in the Central Western, Brazil. We also performed visual surveys to estimate the abundance and biomass of fishes and proposed a trophic classification to understand how these variables can affect fish interactions. Community structure was the main factor affecting the variation in the interactions among the habitats. Biomass was the main variable determining which habitat a fish will feed on, while species abundance determined with how many other species it will interact in the agonistic interaction networks for each habitat. Specific habitats are not only occupied, but also used in distinct ways by the fish community. Overall, our results demonstrate the importance of the heterogeneity of habitats in tropical rivers for the interactions performed by the fishes and how the intensity of these interactions is affected by community structure

    Age-Related and Gender-Related Increases in Colorectal Cancer Mortality Rates in Brazil Between 1979 and 2015: Projections for Continuing Rises in Disease

    Get PDF
    Purpose Brazil is the largest country in South America. Although a developing nation, birth rates have been decreasing in the last few decades, while its overall population is undergoing lifestyle changes and ageing significantly. Moreover, Brazil has had increasingly high mortality rates related to colorectal cancer (CRC). Herein, we investigated whether the Brazilian population is exhibiting increasing mortality rates related to colon cancer (CC) or rectal cancer (RC) in recent years. Methods We examined data from the Brazilian Federal Government from 1979 to 2015 to determine whether CRC mortality and the population ageing process may be associated. Results Our mathematical modelling suggests that mortality rates related to CC and RC events in the Brazilian population may increase by 79% and 66% in the next 24 years, respectively. This finding led us to explore the mortality rates for both diseases in the country, and we observed that the highest levels were in the south and southeast regions from the year 2000 onwards. CC events appear to decrease life expectancy among people during their second decade of life in recent years, whereas RC events induced decreases in life expectancy in those aged >30 years. Additionally, both CC and RC events seem to promote significant mortality rates in the male population aged > 60 years and living in the southern states. Conclusion Our dataset suggests that both CC and RC events may lead to a significantly increasing number of deaths in the Brazilian male population in coming years

    Specific heat and nonlinear susceptibility in spin glasses with random fields

    Get PDF
    We study magnetic properties of spin glass (SG) systems under a random field (RF), based on the suggestion that RFs can be induced by a weak transverse field in the compound LiHo x Y 1 − x F 4 .Weconsideracluster spin model that allows long-range disordered interactions among clusters and short-range interactions inside the clusters, besides a local RF for each spin following a Gaussian distribution with standard deviation Δ. We adopt the one-step replica symmetry breaking approach to get an exactly solvable single-cluster problem. We discuss the behavior of order parameters, specific heat C m , nonlinear susceptibility χ 3 , and phase diagrams for different disorder configurations. In the absence of RF, the χ 3 exhibits a divergence at T f , while the C m shows a broad maximum at a temperature T** around 30% above T f , as expected for conventional SG systems. The presence of RF changes this scenario. The C m still shows the maximum at T** that is weakly dependent on Δ. However,the T f is displaced to lower temperatures, enhancing considerably the ratio T** /T f . Furthermore, the divergence in χ 3 is replaced by a rounded maximum at a temperature T*, which becomes increasingly higher than T f as Δ is enhanced. As a consequence, the paramagnetic phase is unfolded in three regions: (i) a conventional paramagnetism ( T>T** ); (ii) a region with formation of short-range order with frozen spins ( T*<T <T** ); (iii) a region with slow growth of free-energy barriers slowing down the spin dynamics before the SG transition ( T f <T <T* ) suggesting an intermediate Griffiths phase before the SG state. Our results reproduce qualitatively some findings of LiHo x Y 1 − x F 4 as the rounded maximum of χ 3 behavior triggered by RF and the deviation of the conventional relationship between the T f and T**

    Eco-friendly recycled polypropylene matrix composites incorporated with geopolymer concrete waste particles

    Get PDF
    Civil construction wastes have been incorporated into polymers for recycling as novel engineering composites. In the present work eco-friendly composites with recycled polypropylene (rPP) matrix incorporated with geopolymer concrete waste particles, wither plain (GCW) or surface-modified with oleic acid (AGC) were investigated. The geopolymer concrete waste particles were mixed with polymer powder to provide an effective dispersion between the different materials. Composites were produced by an initial reactive extrusion processing followed by injection molding. These novel composites with amount of 20, 40 and 50 wt% of GCW particles, both plain as-received and surface-modified, were technically evaluated by tensile tests, statistically analyzed by ANOVA, as well as by water absorption as per ASTM standards. Surface dispersion of nanoparticles was revealed by atomic force microscopy. Microstructural analysis was performed by scanning electron microscopy. The results indicated that these sustainable GCW particles incorporated into rPP matrix exhibit superior processability and water absorption less than 0.01%. The rPP/AGC composites present relatively higher elastic modulus, 629 MPa, as compared to the neat rPP, with 529 MPa. These properties suggest potential sustainable applications in building construction using waste materials.Peer reviewe

    Nonlinear susceptibility of a quantum spin glass under uniform transverse and random longitudinal magnetic fields

    Get PDF
    The interplay between quantum fluctuations and disorder is investigated in a quantum spin-glass model, in the presence of a uniform transverse field , as well as of a longitudinal random field hi , which follows a Gaussian distribution characterized by a width proportional to . The interactions are infinite-ranged, and the model is studied through the replica formalism, within a one-step replica-symmetry-breaking procedure; in addition, the dependence of the Almeida-Thouless eigenvalue λAT (replicon) on the applied fields is analyzed. This study is motivated by experimental investigations on the LiHoxY1−xF4 compound, where the application of a transverse magnetic field yields rather intriguing effects, particularly related to the behavior of the nonlinear magnetic susceptibility χ3, which have led to a considerable experimental and theoretical debate. We have analyzed two physically distinct situations, namely, and considered as independent, as well as these two quantities related, as proposed recently by some authors. In both cases, a spin-glass phase transition is found at a temperature Tf , with such phase being characterized by a nontrivial ergodicity breaking; moreover, Tf decreases by increasing towards a quantum critical point at zero temperature. The situationwhere and are related [ ≡ ( )] appears to reproduce better the experimental observations on the LiHoxY1−xF4 compound, with the theoretical results coinciding qualitatively with measurements of the nonlinear susceptibility χ3 In this later case, by increasing gradually, χ3 becomes progressively rounded, presenting a maximum at a temperature T ∗ (T ∗ > Tf ), with both the amplitude of the maximum and the value of T ∗ decreasing gradually. Moreover, we also show that the random field is the main responsible for the smearing of the nonlinear susceptibility, acting significantly inside the paramagnetic phase, leading to two regimes delimited by the temperature T ∗, one for Tf T ∗. It is argued that the conventional paramagnetic state corresponds to T >T ∗, whereas the temperature region Tf < T < T ∗ may be characterized by a rather unusual dynamics, possibly including Griffiths singularities
    • …
    corecore