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We use pseudo-quantum electrodynamics in order to describe the full electromagnetic interaction of the
p electrons in graphene in a consistent 2D formulation. We first consider the effect of this interaction in the
vacuum polarization tensor or, equivalently, in the current correlator. This allows us to obtain the T → 0

conductivity after a smooth zero-frequency limit is taken in Kubo’s formula. Thereby, we obtain the usual
expression for the minimal conductivity plus corrections due to the interaction that bring it closer to the
experimental value. We then predict the onset of an interaction-driven spontaneous quantum valley Hall
effect below an activation temperature of the order of 2 K. The transverse (Hall) valley conductivity is
evaluated exactly and shown to coincide with the one in the usual quantum Hall effect. Finally, by
considering the effects of pseudo-quantum electrodynamics, we show that the electron self-energy is such
that a set of P- and T-symmetric gapped electron energy eigenstates are dynamically generated, in
association with the quantum valley Hall effect.
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I. INTRODUCTION

The experimental realization of graphene has opened the
fascinating possibility of observing in a condensed matter
system a number of interesting effects previously consid-
ered to occur exclusively in relativistic particle physics.
The Klein paradox [1] and the Zitterbewegung [2] are
well-known examples. Graphene is also the first concrete
realization of the Dirac sea, the concept that led Dirac to
predict the existence of antimatter. Indeed, Schwinger’s
effect of pair creation out of the vacuum by an electric field
is expected to occur in this material, thus providing another
beautiful connection between condensed matter and par-
ticle physics [3].
Graphene exhibits quite a few unconventional transport

phenomena. These include an anomalous integer quantum
Hall effect (QHE) [4] and a puzzling finite (“minimal”) dc
conductivity at half filling [5], even in the absence of any
dissipation and with a zero density of states. The theoretical
determination of the zero-frequency limit of the optical
conductivity and its dependence on interactions is still a
challenge [6], in part due to the ambiguities associated
with the ω → 0 limit in Kubo’s formula. Attempts to
include the effect of interactions in these calculations

were recently made [7]; however, this effect disappears
in the limit ω → 0.
Nevertheless, optical conductivity measurements [5]

yielded results that in the dc limit are in agreement with
earlier theoretical calculations in the approximation of
noninteracting electrons, in the T → 0 limit, namely,
σ0 ¼ ðπ=2Þe2=h [8,9]. Analogously, the integer QHE [4]
has been understood in terms of relativistic Landau levels
occupied by noninteracting electrons, similarly to the
results for GaAs [10,11].
The unexpected validity of the single-particle description

has raised the question of how relevant the electronic
interactions in graphene are, leading to a vivid debate in
the community. Nonetheless, the recent measurement [12]
of the renormalization of the Fermi velocity [13] is an
indication that interactions should be important. The direct
measurement of the dc conductivity [14], which yielded a
result that is in disagreement with the theoretical calcu-
lation in the absence of interactions, provided additional
evidence for the relevance of these. The experimental
observation of the fractional QHE in ultraclean samples
subject to a perpendicular magnetic field has closed the
debate, undeniably demonstrating that the electronic inter-
actions are indeed important, at least for a certain energy
(temperature) scale [15–18].
Another intriguing transport property that has been

investigated in graphene is the possibility of observing a
quantized transverse (Hall) conductivity under unconven-
tional circumstances. First, Haldane has shown that the
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sufficient condition for the existence of the integer QHE
is a broken time-reversal symmetry (TRS) and not a net
magnetic field, as was previously supposed [19]. Later,
even more unexpected results emerged, such as the exper-
imental observation of the integer QHE at room temper-
ature [20] and the proposal for the existence of a quantum
spin Hall effect in the presence of a sizable spin-orbit
coupling in a system that preserves TRS [21].
Most of the previous approaches, however, rely on a

single-particle description, and the role of interactions, as
well as the proper theoretical framework to include them,
has often been neglected.
Several studies were then performed describing the

electronic interaction by means of a static Coulomb
potential [7,22,23]. These produced very interesting results
for ω ≠ 0. Yet, this procedure implicitly introduces, from
the very beginning, a zero-frequency limit in the current
correlator in the Kubo formula, whereas this limit should
be taken at the very end [24]. This fact may be responsible
for the absence of corrections due to the interaction to the
conductivity in the limit ω → 0.
From first principles, however, the relevant electronic

interaction in graphene is the full electromagnetic inter-
action described by the minimal coupling of the electronic
current to the U(1) electromagnetic gauge field. This,
however, is not easily incorporated in the model because
the electrons in graphene are confined to a plane and
therefore require a 2D description, whereas the electro-
magnetic field is 3D. Should we use Maxwell electrody-
namics in 2D for describing the interaction of the electrons
in graphene, we would get a wrong result (for instance, the
electrostatic potential would be − ln r instead of the correct
1=r). The solution for this problem consists in the use of a
full 2D U(1) gauge field theory, which describes, within the
2D framework, the full physics contained in the 3DMaxwell
theory. Such 2D theory was derived in Ref. [25] in the static
limit. Subsequently, a full dynamical derivation was pro-
vided [26] and the theory was called pseudo-quantum
electrodynamics (PQED) (in part because it involves the
so-called pseudodifferential operators) [26–28].
In this paper, we employ PQED in order to describe the

electronic interactions in graphene and explore some of the
consequences of these. We first determine the corrections to
the minimal conductivity produced by such interactions,
thus obtaining a value at T ¼ 0, ω → 0, which is the closest
to the measured experimental one [14]. We then evaluate
the effects of PQED in the valley conductivity and show
that, below an activation temperature T�, it exhibits a
nonzero transverse component, which is quantized in the
same way as in the usual QHE. This effect is dynamically
generated in graphene, when the full electromagnetic
interaction is completely taken into account. In this case,
we show that the individual valley contribution to the
conductivity contains a P; T-violating transverse (Hall)
component, which has opposite sign for each valley and

consequently leads to a quantum valley Hall effect
(QVHE), rather than to the usual QHE. Then, we inves-
tigate the Schwinger-Dyson equation for the electron self-
energy in PQED and show that the latter satisfies a
differential equation, which has solutions that shift the
poles of the electron propagator to gapped energy states
when the interaction coupling is larger than a certain critical
value. The temperature scale is set by the gap: thermal
activation will destroy the plateaus for temperatures larger
than T�, which corresponds to the gap.
All of the phenomena described here occur only within

an SU(2) description of graphene, which is valid when
there is no backscattering connecting the different valleys.
We show that the use of PQED, contrary to other attempts
to describe the electronic interactions in graphene, yields a
current correlator that renders Kubo’s formula free from
any ambiguities. We also show that our results hold true
when the fact that the Fermi velocity is different from the
speed of light is taken into account.
The outline of this paper is the following: in Sec. II, we

introduce our model within the PQED approach, in Sec. III,
we calculate the current-current correlator, which is then
used in Sec. IV to derive the conductivity for T → 0 and
ω → 0 using the Kubo formula. The fact that vF ≠ c is
explicitly used in this section. In Sec. V, we show the
emergence of a QVHE driven by the interaction, and in
Sec. VI, we evaluate the corresponding gaps, which are
dynamically generated. In Sec. VII, we present our sum-
mary and outlook. We also include two appendixes, where
we examine our results in the light of the Vafa-Witten
theorem (see Appendix A) and discuss the nonrelativistic
limit of Dirac equation (see Appendix B).

II. MODEL

The p electrons of the carbon atoms in the honeycomb
lattice of graphene are usually described as 4-component
massless Dirac fermions, each component corresponding
to the two sublattices (A and B) and the two inequivalent
valleys (K and K0). If we neglect backscattering between
the valleys, however, an equivalent description would
consist of two massless 2-component Dirac fermion fields.
We assume that these Dirac electrons will interact through
the electromagnetic interaction, which in 2D is described
by PQED [26]. The corresponding Lagrangian reads

L ¼ 1

4
Fμν

�
2ffiffiffiffiffiffiffiffi−□p

�
Fμν þ iψ̄a∂ψa þ jμAμ; ð1Þ

where

i∂ ¼ iγ0∂0 þ ivFγi∂i ð2Þ

and
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jμ ¼ eψ̄aγ
μψa ¼ eðψ̄aγ

0ψa; vFψ̄aγ
iψaÞ: ð3Þ

ψa is a 2-component Dirac field, ψ̄a ¼ ψ†
aγ0 is its adjoint,

Fμν is the usual field intensity tensor of the U(1) gauge field
Aμ, which intermediates the electromagnetic interaction
in 2D (pseudoelectromagnetic field), γμ are rank-2 Dirac
matrices, and a ¼ 1;…; Nf is a flavor index, specifying
the spin component and the valley to which the electron
belongs. The coupling constant e2 ¼ 4πα is conveniently
written in terms of α, the fine-structure constant in natural
units. Observe that the two valleys (K andK0) are related by
TRS. In spite of the fact that we are using 2-component
Dirac spinors, however, we do not break TRS ab initio
because we are summing over the two species (as we may
infer from the physical value of Nf). An SU(4) version of
this model has been recently used to study dynamical gap
generation and chiral symmetry breaking in graphene [29].
Because of the linear dependence of the Dirac

Lagrangian on p ¼ ðp0;pÞ, it follows that all dependence
on vF will appear in the form vFp. In an analogous way, the
current changes as jμ ¼ ðj0; jiÞ → jμ ¼ ðj0; vFjiÞ and the
current correlation function that we calculate is actually
v2Fhjji. Since the natural velocity appearing in the gauge
field sector is that of light c, whereas the one occurring
in the electronic sector is the Fermi velocity vF, Lorentz
invariance is broken.

III. CURRENT-CURRENT
CORRELATION FUNCTION

We determine the ω → 0 limit of the optical conductivity
in graphene by using the Kubo formula, which describes
the linear response to a static external electric field. In real
time, it is given by

σik ¼ lim
ω→0;p→0

ihjijki
ω

; ð4Þ

where the current correlation function is meant to contain
only one-particle irreducible (1PI) diagrams [24].
The current correlator is most conveniently obtained

from the corresponding generating functional. Starting
from the generating functional of arbitrary correlators,

Z½J� ¼ N
Z

DAμDψ̄Dψe−
R

d3xðLþejμJμÞ; ð5Þ

where J is a vector functional variable andN ¼ N AN ψ are
constants chosen in such a way that Z½0� ¼ 1, we have that
the generator of connected correlation functions is given by

W½J� ¼ − lnZ½J�: ð6Þ

The generating functional of 1PI correlation functions is
then obtained by the following Legendre transformation:

Γ½Aμ
c� ¼

Z
d3xJμðxÞAμ

cðxÞ −W½J�; ð7Þ

where

Aμ
cðxÞ ¼ δW½J�

δJμðxÞ
: ð8Þ

Thus, the current-current correlation function that is
needed for the Kubo formula can be obtained by taking
the second derivative of the generating functional,

hjμjνi ¼
1

e2
δ2

δAμ
cδAν

c
Γ½Ac�jAc¼0: ð9Þ

It turns out, however, that the above expression is nothing
but the Aμ field self-energy Πμν, also known as the vacuum
polarization tensor, which is given by

G−1
μν −G−1

0;μν ¼ −e2Πμν; ð10Þ

where G is the exact Aμ field Euclidean propagator and G0

is the free one,

G0;μν ¼
1

2
ffiffiffiffiffi
p2

p Pμν: ð11Þ

In this expression, Pμν¼δμν−pμpν=p2, and p2¼p2
3þp2,

where p3 is the third component of the energy-momentum
vector in the Euclidean space. We, therefore, come to the
conclusion that

hjμjνi1PI ¼ Πμν: ð12Þ

Πμν has been calculated up to the order of two loops
in PQED, for the case of 2-component fermions. The
Euclidean one-loop contribution for a single massless
fermion, which is the same for QED in three dimensions
(QED3), is [30]

Πð1Þ
μν ðpÞ ¼ AðpÞPμν þ Bϵμναpα; ð13Þ

where AðpÞ ¼ − ffiffiffiffiffi
p2

p
=16 and B ¼ ð1=2πÞðnþ 1=2Þ, with

n integer. Note the occurrence of a P; T-breaking term,
which is topological and, according to the Coleman-Hill
theorem [31], has no higher-order corrections. Even though
this result is derived for QED3, it also holds for PQED
because it involves only fermion internal lines.
The two-loops correction is exclusive of PQED and

was calculated in Ref. [32] for a single massless fermion,
yielding

Πð2Þ
μν ðpÞ ¼ −

ffiffiffiffiffi
p2

p
16

CααgPμν; ð14Þ
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where Cα ¼ ð92 − 9π2Þ=18π ≈ 0.056 and αg ≈ 300=137 ¼
2.189. It follows that Cααg < 1; hence, the perturbation
expansion is justified. Indeed, there is no correction for the
B term.
According to Eq. (12), the irreducible current-current

correlation function is given by

hjμjνi ¼ j1ðpÞPμν þ j2ϵμναpα; ð15Þ
with

j1ðpÞ ¼ −NfAðpÞ½1þ Cααg þOðe4Þ� ð16Þ

and

j2 ¼ −NfB; ð17Þ

where Nf arose from the sum over all fermions.

IV. CONDUCTIVITY FOR T ¼ 0, ω → 0

The optical conductivity in the T ¼ 0, ω → 0 limit can
be derived, within the linear response regime, from Kubo’s
formula, which for real time is

σik ¼ lim
ω→0;p→0

ihjijkiret
ω

¼ σxxδ
ik þ σxyϵ

ik: ð18Þ

Now, when evaluating the current correlation function
given by Eqs. (12)–(14), we must replace γi → vFγi in the
vertices.
The one-loop result in momentum space is

Π00ðp0;pÞ ¼ − 1

16

p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Fp

2 þ p2
0

p ; ð19Þ

Πi0ðp0;pÞ ¼
1

16

p0piffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Fp

2 þ p2
0

p þ 1

2π

�
nþ 1

2

�
ϵi0jpj;

ð20Þ
and

Πijðp0;pÞ ¼ − 1

16

�
δijðv2Fp2 þ p2

0Þ − v2Fp
ipjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2Fp
2 þ p2

0

p �

þ 1

2π

�
nþ 1

2

�
ϵij0p0: ð21Þ

The generating functional Z½J� is obtained by perform-
ing different Gaussian integrals over A0 and Ai. Then, it is
easy to see from Eq. (12) that the current correlator is
expressed in terms of Πij, Π00, and Πi0. After taking the
limit p → 0 in the Kubo formula, we conclude that the
only contribution comes fromΠij, sinceΠ00 andΠi0 vanish
in this limit. From Eq. (21), however, we see that all
dependence on vF disappears in the limit when the external

momentum p → 0. Note that the above argument also holds
for the two-loops contribution.
The current correlator [Eq. (12)] is proportional to the

number of flavors Nf, consisting of spin ↑, ↓ and valleys
K;K0. We have, therefore, Nf ¼ NS þ NV . The two spin
components give identical contributions to Eq. (4); there-
fore,NS ¼ 2. We must be careful, however, when summing
the contributions from the two valleys K and K0. For
symmetry reasons, it is reasonable to expect that both
valleys will contribute identically. Nevertheless, the valleys
K and K0 are related to each other by TRS and, con-
sequently, their contribution will depend on whether this
symmetry is spontaneously broken or not. When TRS
symmetry is preserved, both valleys clearly give identical
contributions and NV ¼ 2 or Nf ¼ 4.
Indeed, in linear response theory, for each valley, we

have

h0jjij0iK ¼ ih0jjiKjjKj0i
ω

Ej ð22Þ

and

h0jjij0iK0 ¼ ih0jjiK0j
j
K0 j0i

ω
Ej; ð23Þ

where Ej is an external electric field. The contribution from
the two valleys to the average total current is given by
h0jjiK þ jiK0 j0i. According to the result above, this can be
expressed as

h0jjij0iK þ h0jjij0iK0

¼
�
ih0jjiKjjKj0i

ω
þ ih0jjiKjjKj0iT

ω

�
Ej: ð24Þ

Therefore, when the TRS is not spontaneously broken,
the sum of the contributions from the two valleys to the
conductivity is

σik ¼ lim
ω→0;p→0

�
ihjijki
ω

þ ihjijkiT
ω

�
; ð25Þ

where hj jiT is the time-reversed correlator and the sum
over spins is assumed to have been done, namely, at this
level Nf ¼ NS ¼ 2.
Now, observe that, according to Eqs. (16) and (17), j2 is

a constant, whereas j1 is a function of p2 þ p2
3 in Euclidean

space. When we go back to the real time, we must
analytically continue p3 to the imaginary axis. Hence, j1
becomes a function of p2 þ ðip0Þ2. This is invariant under
time reversal (i → −i , p0 → p0 and p → −p) and, con-
sequently, so is j1.
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In the limit p → 0, the current correlator and its time-
reversed version are given, respectively, by expressions of
the form

hjijki ¼ j1(ðip0Þ2)δik þ j2ϵikðip0Þ; ð26Þ
and

hjijkiT ¼ j1(ð−ip0Þ2)δik þ j2ϵikð−ip0Þ: ð27Þ

The first term is clearly invariant, since ðip0Þ2 ¼
ð−ip0Þ2. The second term, conversely, is clearly non-
invariant and derives from the anomalous part of the
vacuum polarization tensor, which is generated by vacuum
fluctuations. The p0 variable above, in the unit system that
we are using, must be identified with the frequency ω in the
Kubo formula [Eq. (4)].
We now take the limit ω → 0 in the optical conductivity.

It is worth mentioning that this limit in the Kubo formula
can be taken unambiguously when PQED is used to
describe the interactions, unlike the usual QED3. This
occurs due to the peculiar structure of the gauge field
propagator of the theory, which produces a linear ω
dependence in the current correlator for p → 0, which will
cancel the ω in the denominator in the Kubo formula. Also,
we can understand why any attempt to use a static Coulomb
1=r interaction for determining the corrections to the
ω → 0 limit of the optical conductivity does not succeed.
When we follow this procedure, we are, from the very
outset, implicitly making ω ¼ 0, thus reversing the correct
order in which the limits should be taken in Kubo’s
formula.
Using Eqs. (26) and (27), we see that the conductivity

has the general form

σik ¼ σxxδik þ σxyϵik: ð28Þ
Inserting Eqs. (26) and (27) into Eq. (25), we find that for

an unbroken TRS phase, only the longitudinal part sur-
vives. The two valleys contribute in the same way; hence,
NV ¼ 2 or Nf ¼ 4. The p0 dependence cancels out, and we
can take the zero-frequency limit without hurdles. Using
Eq. (25), we obtain

σxx ¼
�
π

2

e2

h

��
1þ

�
92 − 9π2

18π

�
αg þOðe4Þ

�
ð29Þ

and

σxy ¼ 0: ð30Þ
To put our results into the literature context, notice that

the collision-dominated limit ℏω ≪ kBT was investigated
in Ref. [33] using the quantum Boltzmann equation. Here,
we study the optical conductivity in the regime ω ≫ kBT=ℏ
(since we start from T ¼ 0 from the beginning and then

take the limit ω → 0) and determine the correction pro-
vided by the full electromagnetic interaction to the non-
interacting value σ0 ¼ πe2=2h. To the best of our
knowledge, the value we find for the conductivity in this
limit, namely, σxx ¼ 1.76 e2=h, is the closest to the
experimental result for the conductivity extrapolated to
zero temperature, namely, σxx ¼ 2.16e2=h [14]. In spite of
this, our result is yet somewhat far from the experimental
result. Further investigations including disorder, for in-
stance, may be required to achieve a better agreement
between theory and experiments.

V. QUANTUM VALLEY HALL EFFECT

The average valley current is defined by

hJiVi ¼ h0jjiKj0i − h0jjiK0 j0i: ð31Þ

It vanishes whenever the two valleys contribute the same
amount to the electric current. From Eq. (31), it is clear that

hJiVi ¼
�
ih0jjiKjjKj0i

ω
− ih0jjiKjjKj0iT

ω

�
Ej: ð32Þ

We can, therefore, define the zero-frequency limit of the
“optical valley conductivity,” which is given by

σikV ¼ lim
ω→0;p→0

�
ihjijki
ω

− ihjijkiT
ω

�
; ð33Þ

where the sum over spins is assumed to have been done.
One immediately concludes that the longitudinal parts
cancel, whereas the transverse component survives. The
valley conductivity, therefore, is given by

σxyV ¼ 4

�
nþ 1

2

�
e2

h
; ð34Þ

for n ¼ integer. The longitudinal component, conversely,
vanishes:

σxxV ¼ 0: ð35Þ

The above result is exact, as a consequence of the
Coleman-Hill theorem. The existence of a transverse valley
conductivity characterizes the occurrence of a QVHE.
It is caused, ultimately, by the presence of the anomalous
P; T-violating term appearing in the vacuum polarization
tensor or, equivalently, in the current correlator. In the
next section, we show that this effect is predicted to occur
for temperatures T < T�, where T� is a temperature above
which the effect is destroyed by thermal activation.
The valley Hall effect has been earlier predicted to

occur in graphene systems subject to a staggered sublattice
potential that breaks inversion symmetry [34,35], or to
strained graphene, where according to recent experiments
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pseudomagnetic fields oppositely oriented in the valleys
can be as large as 300 T [36]. In addition, a fractional valley
Hall effect was proposed to arise in artificial graphene
systems, by fine-tuning the short-range part of interactions
[37]. Note that here no symmetry is broken a priori and no
fine-tuning of model parameters is required to generate the
QVHE. A similar TRS breaking was recently proposed
to occur for bilayer graphene in the presence of static
Coulomb interactions, when fluctuations are taken into
account [38].
The anomalous terms found here are related to electron

masses that are dynamically generated. These, however,
appear in pairs of opposite signs and, for an even number of
flavors, cancel when summed, according to the Vafa-Witten
theorem [39]. Consequently, there is no overall P; T
violation, and for this reason, the QHE does not occur.
The existence of individually violating terms, nevertheless,
is sufficient to produce a QVHE. This is the central result
of this work.

VI. DYNAMICALLY GENERATED DISCRETE
ENERGY STATES AND T�

Recently, it has been shown that the model described
by Eq. (1) dynamically generates a gap in the SU(4) case
due to a breaking of the chiral symmetry [29]. Here, we
investigate the SU(2) case and show that an infinite
sequence of discrete energy eigenstates is dynamically
generated.
For the 2-component Dirac fields considered here, the

associated gap generation breaks the parity and time-
reversal symmetries instead of the chiral one. The gen-
eration of this set of eigenstates, which is a consequence of
the interactions, is therefore another manifestation of the
dynamical symmetry breaking found in the vacuum polari-
zation tensor, which has led to the spontaneous QHE
for each valley below T� in Sec. V. The result is obtained
by a nonperturbative solution of the Schwinger-Dyson
equation [40],

S−1F ðpÞ ¼ S−10FðpÞ − ΣðpÞ; ð36Þ

where S0F and SF are, respectively, the free- and interacting-
electron propagators and ΣðpÞ is the electron self-energy,
which is given by

ΣðpÞ ¼ e2
Z

d3k
ð2πÞ3 γ

μSFðkÞγνGμνðp − kÞ; ð37Þ

where Gμν is the full field propagator of the gauge field. For
the sake of simplicity, we first consider vF ¼ c and then
modify the calculation for vF ≠ c.

By making a Taylor expansion around ϵ,

ΣðpÞ ¼ Σðp ¼ ϵÞ þ ðγμpμ − ϵÞ ∂ΣðpÞ∂p
				
p¼ϵ

þ � � � ; ð38Þ

and imposing

Σðp ¼ ϵÞ ¼ ϵ; ð39Þ
we write the full fermion propagator as

SFðpÞ ¼
1

γμpμ − ΣðpÞ

¼ 1

ðγμpμ − ϵÞð1 − ∂ΣðpÞ
∂p jp¼ϵ þ � � �Þ

¼ γμpμ þ ϵ

ðp2 − ϵ2Þð1 − ∂ΣðpÞ
∂p jp¼ϵ þ � � �Þ

: ð40Þ

We see that ϵ is the pole of the full physical electron
propagator at zero momentum, being, therefore, an eige-
nenergy. Using an e2 expansion, the gauge field propagator
can be written as

Gμν ≈
1ffiffiffiffiffi

p2
p

ð2þ λ
16
Þ
Pμν; ð41Þ

where λ ¼ e2Nf ¼ 4παNf.
Inserting Eq. (36) and Eq. (41) into Eq. (37), we obtain

the integral equation

Σ1ðpÞ ¼
2λ

Nf

Z
d3k
ð2πÞ3

Σ1ðkÞ
k2 þ Σ2

1ðkÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp − kÞ2
p

ð2þ λ
16
Þ ;

ð42Þ
where 2Σ1ðpÞ ¼ trΣðpÞ, with tr denoting the trace over
Dirac matrices. Introducing an ultraviolet cutoff Λ, we
can transform the integral equation (42) into a differential
equation (Euler’s equation),

d
dp

�
p2

dΣ1ðpÞ
dp

�
þ Nc

4Nf
Σ1ðpÞ ¼ 0; ð43Þ

where

Nc ¼
4λ

π2ð2þ λ
16
Þ : ð44Þ

The self-energy also obeys

lim
p→Λ

�
2p

dΣ1ðpÞ
dp

þ Σ1ðpÞ
�

¼ 0 ð45Þ

and
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lim
p→0

p2
dΣ1ðpÞ
dp

¼ 0; ð46Þ

representing the ultraviolet and infrared boundary condi-
tions, respectively.
The solutions of Euler’s differential equation are

Σ1ðpÞ ¼ ~Cpaþ þ ~Dpa− ; ð47Þ
where a� ¼ −1=2� 1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Nc=Nf

p
and ~C and ~D are

constants. The solution Eq. (47) can, without loss of
generality, be rewritten as

Σ1ðpÞ ¼
ðCþDÞffiffiffiffi

p
p cos

�
γ ln

p

Λ̄

�
þ i

ðC −DÞffiffiffiffi
p

p sin

�
γ ln

p

Λ̄

�
;

ð48Þ

where C ¼ ~CΛ̄iγ, D ¼ ~DΛ̄−iγ, and the constant γ is given
by γ ¼ ð1=2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nc=Nf − 1
p

. For Nf ¼ 4, it reads

γ ¼ 2ffiffiffi
π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

α

2þ πα

�
−
�

αc
2þ παc

�s
; ð49Þ

where the critical coupling

αc ¼
2π

16 − π2
≃ 1.02: ð50Þ

Observe that γ is real in the range of couplings such
that α > αc, because the quantity between parentheses in
Eq. (49) is monotonically increasing.
Insertion of Eq. (48) into the boundary condition

[Eq. (45)] provides us with the constraints on the values
of C and D, namely,

lim
p→Λ

2γffiffiffiffi
p

p
�
ðCþDÞ sin

�
γ ln

p

Λ̄

�

þiðD − CÞ cos
�
γ ln

p

Λ̄

��
¼ 0: ð51Þ

There are two possible solutions that obey the constraint:
either C ¼ D and sin½γ lnðΛ=Λ̄Þ� ¼ 0 or C ¼ −D and
cos½γ lnðΛ=Λ̄Þ� ¼ 0.
By assuming 2C ¼ Λ3=2 to regularize the constraint, we

rewrite Eq. (48) as

Σ1ðpÞ ¼
Λ3=2ffiffiffiffiffiffiffi−pp sin

�
γ ln

p

Λ̄

�
; C ¼ −D; ð52Þ

Σ1ðpÞ ¼
Λ3=2ffiffiffiffi
p

p cos

�
γ ln

p

Λ̄

�
; C ¼ D; ð53Þ

where the constant Λ̄ can be obtained from Eq. (45),
namely,

Λ̄ ¼ Λ exp

�
− ð2lþ 1Þπ

2γ

�
; C ¼ −D; ð54Þ

Λ̄ ¼ Λ exp

�
− kπ

γ

�
; C ¼ D; ð55Þ

with k and l integers. Now, we choose these integers to have
a value as small as possible, but in a way to guarantee that
Λ ≥ Λ̄. This choice fixes l ¼ k ¼ 0.
In order to obtain the physical eigenenergies ϵ, we must

solve Eq. (39). Using Eqs. (52) and (53) for the self-energy
and taking the trace of Eq. (39), we have

ϵ ¼ − Λ3=2ffiffiffiffiffiffi−ϵp cos

�
γ ln

jϵj
Λ

�
; ϵ < 0; ð56Þ

ϵ ¼ Λ3=2ffiffiffi
ϵ

p cos

�
γ ln

jϵj
Λ

�
; ϵ > 0. ð57Þ

We now define

z ¼ −γ ln ðjϵj=ΛÞ ðz > 0Þ ð58Þ

or, equivalently,

jϵj ¼ Λ exp

�
− z
γ

�
: ð59Þ

Then, after inserting Eq. (59) into Eqs. (56) and (57), we
find that the dimensionless quantity zðγÞ is given by the
solutions of the transcendental equation

exp

�
− 3z
2γ

�
¼ cos z; ð60Þ

which holds for both ϵ positive or negative. Its solutions
depend on γ, which on its turn is determined by the
coupling and the number of flavors Nf. In Fig. 1, we
show the graphical solutions of the equation above.

FIG. 1. Graphical representation for solutions of the transcen-
dental equation. The value of γ is artificial, to facilitate the
visualization.
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We call zn ¼ Zn, n ¼ 0; 1; 2;…, the solutions of
Eq. (60). It is not difficult to infer, from the graphic
representation of the functions in Eq. (60), that

Zn ¼ nπ þ δn; ð61Þ

where

0 ≤ δn ≤
π

2
; n ¼ 0; 2; 4;…;

π

2
≤ δn ≤ π; n ¼ 1; 3; 5;…: ð62Þ

For all values of n, δn → π=2 for n → ∞, whereas
δn → 0 (n even) and δn → π (n odd) for γ → ∞ (an
unphysical limit, in which Nf → 0).
The energy levels are then

ϵð�Þ
n ¼ �Λ exp

�
−Zn

γ

�
: ð63Þ

Observe that the negative energy levels increase and
the positive ones decrease with n ¼ 0; 1; 2;…, in such a
way that both of them accumulate in zero for n → ∞. In
the situation when γ → 0, which occurs when α → αc, all

energy levels ϵð�Þ
n collapse to zero, thus destroying the

effect. Therefore, αc is a critical quantity for the phenome-
non we describe: this will occur only for α > αc for
Nf ¼ 4. Since γ is small, the lhs of the Eq. (60) tends
to zero and the solutions are the zeros of the cosine
function, which are Zn ≈ ð2nþ 1Þπ=2.
Since the eigenenergies are zero-momentum poles of the

corrected electron propagator, they become dynamically
generated electron masses. Notice that all flavors will
acquire a mass

M ¼ ϵð�Þ
0 ≃�Λ exp

�
− π

2γ

�
: ð64Þ

Fixing the renormalization-group invariant gap M, we
obtain an expression for the renormalized coupling αðΛÞ as
a function of the scale Λ:

π

4

ffiffiffi
π

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð α
2þπαÞ − ð αc

2þπαc
Þ

q ¼ ln

�
Λ
M

�
: ð65Þ

Notice that αc is an ultraviolet fixed point.
We may now estimate the activation temperature thresh-

old T� for the observation of the effect we found. This
corresponds to the thermal activation energy Ea, which is
such that Ea ≥ M, where the gap M is determined from
Eq. (65). According to the Arrhenius law [41],

exp

�
− Ea

kBT�

�
¼ N

N0

; ð66Þ

where the rhs expresses the ratio of successful activation
events, which usually is of the order of 10−14. We find,
therefore,

T� ≃ M
14kB ln 10

: ð67Þ

Observe that T� → 0 as α → αc. In Fig. 2, we plot T� as a
function of the coupling α for Nf ¼ 4. By using the
measured value of the coupling for suspended graphene
in vacuum, namely, α≃ 2.189, we estimate the upper
temperature threshold for observation of the spontaneous
QVHE to be of the order of 2 K.
We finally remark that the existence of a one-to-one

mapping between the energy bands with the respective gaps
and the valley Hall conductivity plateaus, which count the
number of edge states, is reminiscent of the bulk-boundary
correspondence, known to apply for topological insulators.
This holds in spite of the fact that there is no Z2 topological
invariant associated with the QVHE, because when we
integrate over the Brillouin zone, the contributions due to
the K and K0 valleys cancel out.
It is worth emphasizing that the study of dynamical mass

generation for electrons in graphene has been investigated
in the literature in different contexts, by considering only
the static Coulomb interaction with screening effect. In
this case, the quantum corrections in the gauge propagator
contain only the “00” component of the vacuum polariza-
tion [42–44]. The influence of the renormalization of
the Fermi velocity on the gap equation was investigated
in Ref. [44].
We consider now the effects of vF ≠ 1 and c ≠ 1 on the

self-energy ΣðpÞ, on the dynamically generated gaps ϵn,
and on the activation temperature T�. Now, the previous
argument with the scale transformation cannot be used

FIG. 2. Activation temperature T� as a function of the coupling
α for Nf ¼ 4 and Λ ∼ 3.0 eV.
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despite the fact that the propagators are massless, because
each of them contains a different velocity.
In the relativistic case (vF ¼ c ¼ 1), the self-energy is a

function Σð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 þ p2

p
Þ. When we reinstate the physical

values of vF and c, it happens that the self-energy becomes
a function Σ(f1ðvF; cÞp0; f2ðvF; cÞp) [45], where the
coefficient f1ðvF; cÞ is dimensionless, whereas f2ðvF; cÞ
has dimension of velocity. Note that p0 has dimension of
energy when we use the physical units.
We are interested in the dynamically generated gap,

i.e., the mass spectrum; hence, we need to evaluate
Σðf1p0; f2p ¼ 0Þ only. Therefore, we make the Taylor
expansion of the self-energy in the variable p0 around the
gap ϵ, namely,

Σðf1p0Þ ¼ Σðf1ϵÞ þ ðγ0p0 − ϵÞ ∂Σðf1p0Þ
∂p0

				
p0¼ϵ

þ � � � :
ð68Þ

Now, we must impose the condition

Σðf1ϵÞ ¼ ϵ ð69Þ

instead of Eq. (39).
The full fermion propagator at zero momentum becomes

SFðp0;p ¼ 0Þ ¼ 1

γ0p0 − Σðf1p0Þ
¼ 1

ðγ0p0 − ϵÞð1 − ∂Σðf1p0Þ∂p0
jp0¼ϵ þ � � �Þ

¼ γ0p0 þ ϵ

ðp2
0 − ϵ2Þð1 − ∂Σðf1p0Þ∂p0

jp0¼ϵ þ � � �Þ
;

and the dynamically generated gap is still ϵ. This is
determined by Eq. (69), which yields the solutions

ϵ̄ð�Þ
n ¼ �Λ exp

�
− Z̄n

γ

�
; ð70Þ

where Z̄n are solutions of the equation

exp

�
− 3

2γ
z

�
¼ f1ðvF; cÞ cos z: ð71Þ

For physical values of the coupling constant of graphene,
γ is rather small. It follows that the left-hand side of
Eq. (71) is close to zero, as before. Consequently, the
solutions of Eq. (71) are effectively given by the zeros
of the cosine function, independently of the value of
f1ðvF; cÞ. Hence, we conclude that Z̄n coincide with Zn

and the dynamically generated gaps ϵ̄ð�Þ
n are the same as

before. This fact implies that our estimate for the activation

temperature T� remains unchanged when the physical
values of vF and c are used.

VII. SUMMARY AND OUTLOOK

Experimental and theoretical results suggest that elec-
tronic interactions must be important in graphene, at least
for a certain temperature range. The observation of the
fractional QHE [15–17] is an example of the former,
whereas renormalization group calculations, which show
an increase of the interaction strength as we lower the
temperature [13], is an example of the latter.
We provide a complete and strictly 2D description of

the real electromagnetic interactions occurring among the
electrons in graphene, by means of PQED. This allows us
to take the zero limits in the Kubo formula in the correct
order, thus obtaining the longitudinal conductivity of
graphene in the limits T ¼ 0 and ω → 0. Our result yields
the “minimal” value plus corrections due to the interaction,
which make it, to the best of our knowledge, the closest to
the experimental result for the conductivity at T ¼ 0.
In addition, the interaction dynamically generates,

through one-loop vacuum fluctuations, a term that poten-
tially could produce TRS breaking. This induces a trans-
verse (Hall) valley conductivity quantized exactly as if
there was an external magnetic field in the QHE, below an
activation temperature T�. Discrete states corresponding
to the Hall plateaus, and analogous to the Landau levels
in the usual QHE, are generated as interaction induced
renormalized poles of the fully corrected electron propa-
gator at zero momentum. TRS is restored when we sum
over all generated states.
The quantization of our valley currents is emergent,

exact, and universal, contrarily to the results obtained in
the literature for a QVHE driven by inversion symmetry
breaking (staggered chemical potential) [34,35,46]. Even
though our calculations are made at T ¼ 0, we estimate the
upper temperature threshold T� for observing the effect by
identifying it with the Arrhenius activation temperature.
This follows from the fact that, when the temperature
reaches a level such that most of the states would be
populated by thermal activation, the plateaus would be
washed out.
Let us remark here that, despite the fact of seemingly

being nonlocal, PQED has been proved to respect causality
[27] and also unitarity [47].
The easiest way to experimentally observe the phenome-

non predicted here is by first implementing a valley filtering
in the graphene system, and then performing usual trans-
port measurements of the electronic Hall conductivity.
A second possibility is to use light to probe the valley
conductivity, since electrons from different valleys are
sensitive to the circular polarization of light [46], thus
producing a circular dichroism whenever they are spatially
separated. During the past years, several setups have been
suggested as a way to spatially separate the contribution of
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the different (K;K0) valleys (Ref. [48–51]). In Ref. [48], a
valley filter is proposed to be realized by passing an
electronic current through graphene nanoconstrictions with
zigzag edges. A second alternative is provided by inves-
tigating graphene samples with a line defect, as exper-
imentally realized in Ref. [52]. In this case, quasiparticles
hitting the line defect nearly perpendicularly will be filtered
with almost 100% valley polarization [49]. Indeed, the line
defect fully transmits (reflects) quasiparticles originating
from the K (K0) valley, thus separating both valleys in
space. The result is then a time-reversal symmetry-broken
quantum Hall effect for each valley in each edge of the
sample, which should be detectable through usual transport
measurements or unpolarized light and exhibit a quantized
Hall conductivity of σK ¼ 2ðnþ 1=2Þe2=h at a single
edge. We hope that our results will trigger further experi-
ments to observe this fascinating interaction-driven QVHE
at low temperatures. This work opens the path to exactly
quantized valleytronics in graphene, thus bringing the field
a step further in comparison to the noninteracting model
studied in silicene [46].
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APPENDIX A: VAFA-WITTEN THEOREM

Here, we examine our results in the light of the Vafa-
Witten theorem [39]. We start by reviewing the proof of the
theorem. Consider the partition function of a gauge field
with a vector minimal coupling to a Dirac field of mass M
in Euclidean space. Integration over the Dirac field yields

Z½ξ� ¼ N
Z

DAμe−Sξ½Aμ�Det½DþM�½Aμ�: ðA1Þ

On general grounds, the bosonic part of the action may
be decomposed into a P-invariant (and T-invariant) part S0
and a P-noninvariant (and T-noninvariant) part iξX, which
in Euclidean space is purely imaginary. Indeed, in the
expression above Sξ ¼ S0 þ iξX [39], where ξ is a real
parameter.
The theorem follows from the fact that, for a real and

positive fermionic determinant, evidently, we have a bound
Z½ξ� ≤ Z½0�. Defining Z½ξ� ¼ e−V½ξ�, we have V½ξ� ≥ V½0�.

Hence, the energetically most stable state is the one with
ξ ¼ 0, implying hXi ¼ 0, which means that there is no
spontaneous breakdown of P and T symmetries. This
completes the proof.
A key ingredient for the demonstration of the Vafa-

Witten theorem is the fact that the fermionic determinant
must be real and positive. This is guaranteed by the
following lemma: Suppose the anti-Hermitian operator D
has eigenvalues iλ;

½DþM�ψ ¼ ½M þ iλ�ψ : ðA2Þ

Since the γ5 matrix anticommutes with D, it follows that
for each eigenstate ψ , there will be another one given by
γ5ψ , with eigenvalue ½M − iλ�. The fermionic determinant,
accordingly, will be

Q
λ½M2 þ λ2�, which is real and

positive, thus completing the proof of the lemma.
We now come to the system we are using for describing

graphene. A great difference with respect to the framework
where the Vafa-Witten theorem has been demonstrated is
the fact that there is no γ5 matrix for 2-component Dirac
fermions in two spatial dimensions; hence, the above
lemma, which forced the fermionic determinant to be real
and positive, does not apply.
The fermionic determinant was actually calculated

in Ref. [30] for a single 2-component fermion in two-
dimensional space and, indeed, it presents a complex phase.
This is proportional to a Chern-Simons term, which is not
invariant under either P or T, and the proportionality factor
is fixed and nonvanishing. In this case, the theorem clearly
does not apply. The bound on the partition function just
cannot be fulfilled.
Now consider the case of many-flavor fermions. Then,

we have the product of all flavor determinants, which
results in a real positive modulus plus an overall phase
given by the sum of the complex phases of all flavors. For
fermions of mass M, each phase is proportional to M=jMj,
namely, to the mass’s sign. This fact leads us to conclude,
by using the same argument employed in the demonstration
of the theorem, that the anomalous phases would cancel
for an even number of flavors provided there is the same
number of masses with opposite signs. This would make
the resulting many-flavor determinant real and positive and
would redeem the result of P and T invariance.
In our system, specifically, we have just seen in the

previous section that in the low-temperature phase the
dynamically generated electron masses present two oppo-
site signs: M ¼ �jϵ0j; hence, the anomalous complex
phases will cancel in compliance with the Vafa-Witten
theorem.
The dynamical generation of masses and the associated

occurrence of complex phases in the fermionic determi-
nants, even though canceling when fully summed, are
responsible for the onset of a nonvanishing valley current
above the critical coupling αc given by Eq. (50) and below
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the activation temperature T�, which characterizes
a QVHE.
This is the “center of gravity” of this work, the point

where the dynamical generation of electron masses,
obtained from the electron self-energy, meets the dynamical
generation of a P- and T-violating term in the vacuum
polarization, for each flavor. By summing over the even
number of flavors, the anomalous terms do cancel as a
consequence of the fact that the masses are generated in
pairs of opposite signs. This form of mass generation,
despite ruling out a regular QHE, however, does imply
a QVHE.

APPENDIX B: NONRELATIVISTIC LIMIT

Here, we investigate the small vF=c limit of the Dirac
equation, assuming we are in the phase where the energy

states ϵð�Þ
n are present and give a mass to the electrons.

Then, the Foldy-Wouthuysen transformation can be applied
to the Dirac equation coupled to the pseudoelectromagnetic
field. This result can be easily obtained from the corre-
sponding transformation in QED4 [53], simply by con-
straining the matter to move only in the x-y plane with
Jz ¼ 0 (no current matter in the z direction).
Using the Fermi velocity divided by the light velocity as

an expansion parameter, the nonrelativistic limit of the
Dirac equation in the lowest approximation yields the Pauli
equation, which contains (a) the minimal coupling with the
vector potential ∝ ðp −AÞ2, (b) an electron-spin interac-
tion with the magnetic field ∝ ðσ · BÞ, and (c) the static
Coulomb interaction ∝ ð1=rÞ.
In the absence of a magnetic field, the second-order term

in the expansion gives other interactions related to the
electric field: (a) a Darwin interaction ∝ ρðrÞ and (b) a spin-
orbit term which, taking Jz ¼ 0, reduces to a Rashba-like
spin-orbit coupling. By applying an electric field in the z
direction, for instance, we obtain a spin-orbit coupling
∝ ðσxpy − σypxÞ. It was recently shown that it is possible
to generate quantum Hall states in the presence of a Rashba
spin-orbit coupling and static interactions [54]. Since the
spin-orbit coupling is included in the full electromagnetic
interaction and this produces the QVHE, there could be a
relation between the two effects. We shall explore this
connection elsewhere.

[1] M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Chiral
Tunnelling and the Klein Paradox in Graphene, Nat. Phys.
2, 620 (2006).

[2] M. I. Katsnelson, Zitterbewegung, Chirality, and Minimal
Conductivity in Graphene, Eur. Phys. J. B 51, 157 (2006); J.
Tworzydlo, B. Trauzettel, M. Titov, A. Rycerz, and C.W. J.
Beenakker, Sub-Poissonian Shot Noise in Graphene, Phys.
Rev. Lett. 96, 246802 (2006).

[3] D. Allor, T. D. Cohen, and D. A. McGady, Schwinger
Mechanism and Graphene, Phys. Rev. D 78, 096009
(2008).

[4] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang,
M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A.
Firsov, Two-Dimensional Gas of Massless Dirac Fermions
in Graphene, Nature (London) 438, 197 (2005).

[5] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov,
T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim,
Fine Structure Constant Defines Visual Transparency of
Graphene, Science 320, 1308 (2008).

[6] H. C. Kao, M. Lewkowicz, and B. Rosenstein, Ballistic
Transport, Chiral Anomaly, and Emergence of the Neutral
Electron-Hole Plasma in Graphene, Phys. Rev. B 82,
035406 (2010); M. Lewkowicz, B. Rosenstein, and D.
Nghiem, Two Distinct Ballistic Processes in Graphene at
the Dirac Point, Phys. Rev. B 84, 115419 (2011).

[7] V. Juričić, O. Vafek, and I. F. Herbut, Conductivity of
Interacting Massless Dirac Particles in Graphene: Colli-
sionless Regime, Phys. Rev. B 82, 235402 (2010); I. F.
Herbut, V. Juricic, and O. Vafek, Coulomb Interaction,
Ripples, and the Minimal Conductivity of Graphene, Phys.
Rev. Lett. 100, 046403 (2008).

[8] A.W.W. Ludwig, M. P. A. Fisher, R. Shankar, and G.
Grinstein, Integer Quantum Hall Transition: An Alternative
Approach and Exact Results, Phys. Rev. B 50, 7526 (1994).

[9] K. Ziegler, Minimal Conductivity of Graphene: Nonuniver-
sal Values from the Kubo Formula, Phys. Rev. B 75,
233407 (2007); L. A. Falkovsky and S. S. Pershoguba,
Optical Far-Infrared Properties of a Graphene Monolayer
and Multilayer, Phys. Rev. B 76, 153410 (2007); T. Stauber,
N. M. R. Peres, and A. K. Geim, Optical Conductivity of
Graphene in the Visible Region of the Spectrum, Phys. Rev.
B 78, 085432 (2008).

[10] M. O. Goerbig, Electronic Properties of Graphene in a
Strong Magnetic Field, Rev. Mod. Phys. 83, 1193 (2011).

[11] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S.
Novoselov, and A. K. Geim, The Electronic Properties of
Graphene, Rev. Mod. Phys. 81, 109 (2009).

[12] D. C. Elias, R. V. Gorbachev, A. S. Mayorov, S. V. Morozov,
A. A. Zhukov, P. Blake, L. A. Ponomarenko, I. V.
Grigorieva, K. S. Novoselov, F. Guinea, and A. K. Geim,
Dirac Cones Reshaped by Interaction Effects in Suspended
Graphene, Nat. Phys. 7, 701 (2011).

[13] M. A. H. Vozmediano and F. Guinea, Effect of Coulomb
Interactions on the Physical Observables of Graphene,
Phys. Scr. T146, 014015 (2012); F. de Juan, A. G. Grushin,
and M. A. H. Vozmediano, Renormalization of Coulomb
Interaction in Graphene: Determining Observable Quan-
tities, Phys. Rev. B 82, 125409 (2010).

[14] X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Approach-
ing Ballistic Transport in Suspended Graphene, Nat.
Nanotechnol. 3, 491 (2008).

[15] X. Du, I. Skachko, F. Duerr, A. Luican, and E. Y. Andrei,
Fractional Quantum Hall Effect and Insulating Phase of
Dirac Electrons in Graphene, Nature (London) 462, 192
(2009).

[16] K. l. Bolotin, F. Ghahari, M. D. Shulman, H. L. Stormer, and
P. Kim, Observation of the Fractional Quantum Hall Effect
in Graphene, Nature (London) 462, 196 (2009).

INTERACTION INDUCED QUANTUM VALLEY HALL … PHYS. REV. X 5, 011040 (2015)

011040-11

http://dx.doi.org/10.1038/nphys384
http://dx.doi.org/10.1038/nphys384
http://dx.doi.org/10.1140/epjb/e2006-00203-1
http://dx.doi.org/10.1103/PhysRevLett.96.246802
http://dx.doi.org/10.1103/PhysRevLett.96.246802
http://dx.doi.org/10.1103/PhysRevD.78.096009
http://dx.doi.org/10.1103/PhysRevD.78.096009
http://dx.doi.org/10.1038/nature04233
http://dx.doi.org/10.1126/science.1156965
http://dx.doi.org/10.1103/PhysRevB.82.035406
http://dx.doi.org/10.1103/PhysRevB.82.035406
http://dx.doi.org/10.1103/PhysRevB.84.115419
http://dx.doi.org/10.1103/PhysRevB.82.235402
http://dx.doi.org/10.1103/PhysRevLett.100.046403
http://dx.doi.org/10.1103/PhysRevLett.100.046403
http://dx.doi.org/10.1103/PhysRevB.50.7526
http://dx.doi.org/10.1103/PhysRevB.75.233407
http://dx.doi.org/10.1103/PhysRevB.75.233407
http://dx.doi.org/10.1103/PhysRevB.76.153410
http://dx.doi.org/10.1103/PhysRevB.78.085432
http://dx.doi.org/10.1103/PhysRevB.78.085432
http://dx.doi.org/10.1103/RevModPhys.83.1193
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1038/nphys2049
http://dx.doi.org/10.1088/0031-8949/2012/T146/014015
http://dx.doi.org/10.1103/PhysRevB.82.125409
http://dx.doi.org/10.1038/nnano.2008.199
http://dx.doi.org/10.1038/nnano.2008.199
http://dx.doi.org/10.1038/nature08522
http://dx.doi.org/10.1038/nature08522
http://dx.doi.org/10.1038/nature08582


[17] F. Ghahari, Y. Zhao, P. Cadden-Zimansky, K. Bolotin, and P.
Kim, Measurement of the ν ¼ 1=3 Fractional Quantum
Hall Energy Gap in Suspended Graphene, Phys. Rev. Lett.
106, 046801 (2011).

[18] C. R. Dean, A. F. Young, P. Cadden-Zimansky, L. Wang, H.
Ren, K. Watanabe, T. Taniguchi, P. Kim, J. Hone, and K. L.
Shepard, Multicomponent Fractional Quantum Hall Effect
in Graphene, Nat. Phys. 7, 693 (2011).

[19] F. D. M. Haldane, Model for a Quantum Hall Effect without
Landau Levels: Condensed-Matter Realization of the “Par-
ity Anomaly”, Phys. Rev. Lett. 61, 2015 (1988).

[20] K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L.
Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim,
and A. K. Geim, Room-Temperature Quantum Hall Effect
in Graphene, Science 315, 1379 (2007).

[21] C. L. Kane and E. J. Mele, Topological Order and the
Quantum Spin Hall Effect, Phys. Rev. Lett. 95, 146802
(2005); Quantum Spin Hall Effect in Graphene, Phys. Rev.
Lett. 95, 226801 (2005).

[22] E. G. Mishchenko, Minimal Conductivity in Graphene:
Interaction Corrections and Ultraviolet Anomaly, Euro-
phys. Lett. 83, 17005 (2008); D. E. Sheehy and J. Schma-
lian, Optical Transparency of Graphene as Determined
by the Fine-Structure Constant, Phys. Rev. B 80, 193411
(2009); I. Sodemann and M.M. Fogler, Interaction Cor-
rections to the Polarization Function of Graphene, Phys.
Rev. B 86, 115408 (2012); D. N. Basov, M. M. Fogler, A.
Lanzara, F. Wang, and Y. Zhang, Colloquium: Graphene
Spectroscopy, Rev. Mod. Phys. 86, 959 (2014).

[23] I. F. Herbut and V. Mastropietro, Universal Conductivity of
Graphene in the Ultrarelativistic Regime, Phys. Rev. B 87,
205445 (2013).

[24] G. D. Mahan, Many-Particle Physics (Plenum Press,
New York, 1993).

[25] A. Kovner and B. Rosenstein, Kosterlitz-Thouless Mecha-
nism of Two-Dimensional Superconductivity, Phys. Rev. B
42, 4748 (1990); N. Dorey and N. E. Mavromatos, QED3

and Two-Dimensional Superconductivity without Parity
Violation, Nucl. Phys. B386, 614 (1992).

[26] E. C. Marino, Quantum Electrodynamics of Particles on a
Plane and the Chern-Simons Theory, Nucl. Phys. B408, 551
(1993).

[27] R. L. P. G. do Amaral and E. C. Marino, Canonical Quan-
tization of Theories Containing Fractional Powers of the
d’Alembertian Operator, J. Phys. A 25, 5183 (1992).

[28] E. C. Marino, Complete Bosonization of the Dirac Fermion
Field in 2þ 1 Dimensions, Phys. Lett. B 263, 63 (1991).

[29] V. S. Alves, W. S. Elias, L. O. Nascimento, V. Juričić, and F.
Peña, Chiral Symmetry Breaking in the Pseudo-Quantum
Electrodynamics, Phys. Rev. D 87, 125002 (2013).

[30] A. Coste and M. Luscher, Parity Anomaly and Fermion-
Boson Transmutation in 3-Dimensional Lattice QED, Nucl.
Phys. B323, 631 (1989).

[31] M. D. Bernstein and T. Lee, Radiative Corrections to the
Topological Mass in (2þ 1)-Dimensional Electrodynamics,
Phys. Rev. D 32, 1020 (1985); S. Coleman and B. Hill, No
More Corrections to the Topological Mass Term in QED3,
Phys. Lett. 159B, 184 (1985).

[32] S. Teber, Electromagnetic Current Correlations in Reduced
Quantum Electrodynamics, Phys. Rev. D 86, 025005

(2012); Two-Loop Fermion Self-Energy and Propagator
in ReducedQED3;2, Phys. Rev. D 89, 067702 (2014); A. V.
Kotikov and S. Teber, Two-Loop Fermion Self-Energy in
Reduced Quantum Electrodynamics and Application to the
Ultrarelativistic Limit of Graphene, Phys. Rev. D 89,
065038 (2014); S. Teber and A. V. Kotikov, Interaction
Corrections to the Minimal Conductivity of Graphene via
Dimensional Regularization, Europhys. Lett. 107, 57001
(2014).

[33] L. Fritz, J. Schmalian, M. Muller, and S. Sachdev, Quantum
Critical Transport in Clean Graphene, Phys. Rev. B 78,
085416 (2008).

[34] D. Xiao, W. Yao, and Q. Niu, Valley-Contrasting Physics in
Graphene: Magnetic Moment and Topological Transport,
Phys. Rev. Lett. 99, 236809 (2007).

[35] W. Yao, S. A. Yang, and Q. Niu, Edge States in Graphene:
From Gapped Flat-Band to Gapless Chiral Modes, Phys.
Rev. Lett. 102, 096801 (2009).

[36] N. Levy, S. A. Burke, K. L. Meaker, M. Panlasiqui, A. Zettl,
F. Guinea, A. H. Castro Neto, and M. F. Crommie, Strain-
Induced Pseudo-Magnetic Fields Greater Than 300 Tesla in
Graphene Nanobubbles, Science 329, 544 (2010).

[37] P. Ghaemi, J. Cayssol, D. N. Sheng, and A. Vishwanath,
Fractional Topological Phases and Broken Time-Reversal
Symmetry in Strained Graphene, Phys. Rev. Lett. 108,
266801 (2012).

[38] R. Nandkishore and L. Levitov, Quantum Anomalous Hall
State in Bilayer Graphene, Phys. Rev. B 82, 115124 (2010).

[39] C. Vafa and E. Witten, Parity Conservation in Quantum
Chromodynamics, Phys. Rev. Lett. 53, 535 (1984); Re-
strictions on Symmetry Breaking in Vector-Like Gauge
Theories, Nucl. Phys. B234, 173 (1984); Eigenvalue In-
equalities for Fermions in Gauge Theories, Commun. Math.
Phys. 95, 257 (1984).

[40] For an excellent review on Schwinger-Dyson equations, see
C. D. Roberts and A. G. Williams, Dyson-Schwinger Equa-
tions and Their Application to Hadronic Physics, Prog. Part.
Nucl. Phys. 33, 477 (1994).

[41] R. D. Levine, Molecular Reaction Dynamics (Cambridge
University Press, Cambridge, England, 2005).

[42] D. V. Khveshchenko, Ghost Excitonic Insulator Transition
in Layered Graphite, Phys. Rev. Lett. 87, 246802 (2001);
Magnetic-Field-Induced Insulating Behavior in Highly
Oriented Pyrolitic Graphite, Phys. Rev. Lett. 87, 206401
(2001); D. V. Khveshchenko and H. Leal, Excitonic Insta-
bility in Layered Degenerate Semimetals, Nucl. Phys. B687,
323 (2004); D. V. Khveshchenko and W. F. Shively, Exci-
tonic Pairing Between Nodal Fermions, Phys. Rev. B 73,
115104 (2006).

[43] E. V. Gorbar, V. P. Gusynin, V. A. Miransky, and I. A.
Shovkovy, Magnetic Field Driven Metal-Insulator Phase
Transition in Planar Systems, Phys. Rev. B 66, 045108
(2002); Fractal Structure of the Effective Action in (Quasi)
Planar Models with Long-Range Interactions, Phys. Lett. A
313, 472 (2003).

[44] D. V.Khveshchenko,MassiveDiracFermions inSingle-Layer
Graphene, J. Phys. Condens. Matter 21, 075303 (2009).

[45] H. Isobe and N. Nagaosa, Renormalization Group Study of
Electromagnetic Interaction in Multi-Dirac-Node Systems,
Phys. Rev. B 87, 205138 (2013).

MARINO et al. PHYS. REV. X 5, 011040 (2015)

011040-12

http://dx.doi.org/10.1103/PhysRevLett.106.046801
http://dx.doi.org/10.1103/PhysRevLett.106.046801
http://dx.doi.org/10.1038/nphys2007
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1126/science.1137201
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1209/0295-5075/83/17005
http://dx.doi.org/10.1209/0295-5075/83/17005
http://dx.doi.org/10.1103/PhysRevB.80.193411
http://dx.doi.org/10.1103/PhysRevB.80.193411
http://dx.doi.org/10.1103/PhysRevB.86.115408
http://dx.doi.org/10.1103/PhysRevB.86.115408
http://dx.doi.org/10.1103/RevModPhys.86.959
http://dx.doi.org/10.1103/PhysRevB.87.205445
http://dx.doi.org/10.1103/PhysRevB.87.205445
http://dx.doi.org/10.1103/PhysRevB.42.4748
http://dx.doi.org/10.1103/PhysRevB.42.4748
http://dx.doi.org/10.1016/0550-3213(92)90632-L
http://dx.doi.org/10.1016/0550-3213(93)90379-4
http://dx.doi.org/10.1016/0550-3213(93)90379-4
http://dx.doi.org/10.1088/0305-4470/25/19/026
http://dx.doi.org/10.1016/0370-2693(91)91708-4
http://dx.doi.org/10.1103/PhysRevD.87.125002
http://dx.doi.org/10.1016/0550-3213(89)90127-2
http://dx.doi.org/10.1016/0550-3213(89)90127-2
http://dx.doi.org/10.1103/PhysRevD.32.1020
http://dx.doi.org/10.1016/0370-2693(85)90883-4
http://dx.doi.org/10.1103/PhysRevD.86.025005
http://dx.doi.org/10.1103/PhysRevD.86.025005
http://dx.doi.org/10.1103/PhysRevD.89.067702
http://dx.doi.org/10.1103/PhysRevD.89.065038
http://dx.doi.org/10.1103/PhysRevD.89.065038
http://dx.doi.org/10.1209/0295-5075/107/57001
http://dx.doi.org/10.1209/0295-5075/107/57001
http://dx.doi.org/10.1103/PhysRevB.78.085416
http://dx.doi.org/10.1103/PhysRevB.78.085416
http://dx.doi.org/10.1103/PhysRevLett.99.236809
http://dx.doi.org/10.1103/PhysRevLett.102.096801
http://dx.doi.org/10.1103/PhysRevLett.102.096801
http://dx.doi.org/10.1126/science.1191700
http://dx.doi.org/10.1103/PhysRevLett.108.266801
http://dx.doi.org/10.1103/PhysRevLett.108.266801
http://dx.doi.org/10.1103/PhysRevB.82.115124
http://dx.doi.org/10.1103/PhysRevLett.53.535
http://dx.doi.org/10.1016/0550-3213(84)90230-X
http://dx.doi.org/10.1007/BF01212397
http://dx.doi.org/10.1007/BF01212397
http://dx.doi.org/10.1016/0146-6410(94)90049-3
http://dx.doi.org/10.1016/0146-6410(94)90049-3
http://dx.doi.org/10.1103/PhysRevLett.87.246802
http://dx.doi.org/10.1103/PhysRevLett.87.206401
http://dx.doi.org/10.1103/PhysRevLett.87.206401
http://dx.doi.org/10.1016/j.nuclphysb.2004.03.020
http://dx.doi.org/10.1016/j.nuclphysb.2004.03.020
http://dx.doi.org/10.1103/PhysRevB.73.115104
http://dx.doi.org/10.1103/PhysRevB.73.115104
http://dx.doi.org/10.1103/PhysRevB.66.045108
http://dx.doi.org/10.1103/PhysRevB.66.045108
http://dx.doi.org/10.1016/S0375-9601(03)00846-6
http://dx.doi.org/10.1016/S0375-9601(03)00846-6
http://dx.doi.org/10.1088/0953-8984/21/7/075303
http://dx.doi.org/10.1103/PhysRevB.87.205138


[46] M. Ezawa, Spin Valleytronics in Silicene: Quantum Spin Hall
Quantum Anomalous Hall Insulators and Single-Valley
Semimetals, Phys. Rev. B 87, 155415 (2013); Valley-
Polarized Metals and Quantum Anomalous Hall Effect in
Silicene, Phys. Rev. Lett. 109, 055502 (2012); Photoinduced
Topological Phase Transition and a Single Dirac-Cone State
in Silicene, Phys. Rev. Lett. 110, 026603 (2013).

[47] E. C. Marino, L. O. Nascimento, V. S. Alves, and C. Morais
Smith,Unitarity of Theories Containing Fractional Powers of
the d’Alembertian Operator, Phys. Rev. D 90, 105003 (2014).

[48] A. Rycerz, J. Tworzydlo, and C.W. J. Beenakker, Valley
Filter and Valley Valve in Graphene, Nat. Phys. 3, 172
(2007).

[49] D. Gunlycke and C. T. White, Graphene Valley Filter Using
a Line Defect, Phys. Rev. Lett. 106, 136806 (2011).

[50] T. Fujita, M. B. A. Jalil, and S. G. Tan, Valley Filter in
Strain Engineered Graphene, Appl. Phys. Lett. 97, 043508
(2010).

[51] N. Myoung and G. Ihm, Gate-Tunable Valley-Filter Based
on Suspended Graphene with Double Magnetic Barrier
Structures, Curr. Appl. Phys. 14, 1455 (2014).

[52] J. Lahiri, Y. Lin, P. Bozkurt, I. I. Oleynik, and M. Batzill,
An Extended Defect in Graphene as a Metallic Wire,
Nat. Nanotechnol. 5, 326 (2010)

[53] J. D. Bjorken and S. D. Drell, Relativistic Quantum
Mechanics (McGraw-Hill, College Park, MD, 1965).

[54] W. Beugeling, N. Goldman, and C. Morais Smith,
Topological Phases in a Two-Dimensional Lattice:
Magnetic Field Versus Spin-Orbit Coupling, Phys. Rev.
B 86, 075118 (2012).

INTERACTION INDUCED QUANTUM VALLEY HALL … PHYS. REV. X 5, 011040 (2015)

011040-13

http://dx.doi.org/10.1103/PhysRevB.87.155415
http://dx.doi.org/10.1103/PhysRevLett.109.055502
http://dx.doi.org/10.1103/PhysRevLett.110.026603
http://dx.doi.org/10.1103/PhysRevD.90.105003
http://dx.doi.org/10.1038/nphys547
http://dx.doi.org/10.1038/nphys547
http://dx.doi.org/10.1103/PhysRevLett.106.136806
http://dx.doi.org/10.1063/1.3473725
http://dx.doi.org/10.1063/1.3473725
http://dx.doi.org/10.1016/j.cap.2014.08.004
http://dx.doi.org/10.1038/nnano.2010.53
http://dx.doi.org/10.1103/PhysRevB.86.075118
http://dx.doi.org/10.1103/PhysRevB.86.075118

