6,129 research outputs found

    Supersymmetric SO(10) Grand Unification at the LHC and Beyond

    Get PDF
    We study models of supersymmetric grand unification based on the SO(10) gauge group. We investigate scenarios of non-universal gaugino masses including models containing a mixture of two representations of hidden sector chiral superfields. We analyse the effect of excluding mu from the fine-tuning measure, and confront the results with low energy constraints, including the Higgs boson mass, dark matter relic density and supersymmetry bounds. We also determine high scale Yukawa coupling ratios and confront the results with theoretical predictions. Finally, we present two additional benchmarks that should be explored at the LHC and future colliders.Comment: Published versio

    Spin-density-wave instability in graphene doped near the van Hove singularity

    Full text link
    We study the instability of the metallic state towards the formation of a new ground state in graphene doped near the van Hove singularity. The system is described by the Hubbard model and a field theoretical approach is used to calculate the charge and spin susceptibility. We find that for repulsive interactions, within the random phase approximation, there is a competition between ferromagnetism and spin-density wave (SDW). It turns out that a SDW with a triangular geometry is more favorable when the Hubbard parameter is above the critical value U_c(T), which depends on the temperature T, even if there are small variations in the doping. Our results can be verified by ARPES or neutron scattering experiments in highly doped graphene.Comment: 5 pages, 5 figures, 1 tabl

    Ultracold fermions in a one-dimensional bipartite optical lattice: metal-insulator transitions driven by shaking

    Full text link
    We describe the behavior of a system of fermionic atoms loaded in a bipartite one-dimensional optical lattice that is under the action of an external time-periodic driving force. By using Floquet theory, an effective model with renormalized hopping coefficients is derived. The insulating behavior characterizing the system at half-filling in the absence of driving is dynamically suppressed and for particular values of the driving parameter the system becomes either a standard metal or an unconventional metal with four Fermi points. We use the bosonization technique to investigate the effect of on-site Hubbard interactions on the four Fermi-point metal-insulator phase transition. Attractive interactions are expected to enlarge the regime of parameters where the unconventional metallic phase arises, whereas repulsive interactions reduce it. This metallic phase is known to be a Luther-Emery liquid (spin gapped metal) for both, repulsive and attractive interactions, contrarily to the usual Hubbard model which exhibits a Mott insulator phase for repulsive interactions. Ultracold fermions in driven one-dimensional bipartite optical lattices provide an interesting platform for the realization of this long studied four Fermi-point unconventional metal.Comment: 11 pages, 6 figure

    Phase Transition and Monopoles Densities in a Nearest Neighbors Two-Dimensional Spin Ice Model

    Full text link
    In this work, we show that, due to the alternating orientation of the spins in the ground state of the artificial square spin ice, the influence of a set of spins at a certain distance of a reference spin decreases faster than the expected result for the long range dipolar interaction, justifying the use of the nearest neighbor two dimensional square spin ice model as an effective model. Using an extension of the model presented in ref. [Scientific Reports 5, 15875 (2015)], considering the influence of the eight nearest neighbors of each spin on the lattice, we analyze the thermodynamics of the model and study the monopoles and string densities dependence as a function of the temperature.Comment: 11 pages, 8 figure

    Dirac Cones, Topological Edge States, and Nontrivial Flat Bands in Two-Dimensional Semiconductors with a Honeycomb Nanogeometry

    Get PDF
    We study theoretically two-dimensional single-crystalline sheets of semiconductors that form a honeycomb lattice with a period below 10 nm. These systems could combine the usual semiconductor properties with Dirac bands. Using atomistic tight-binding calculations, we show that both the atomic lattice and the overall geometry influence the band structure, revealing materials with unusual electronic properties. In rocksalt Pb chalcogenides, the expected Dirac-type features are clouded by a complex band structure. However, in the case of zinc-blende Cd-chalcogenide semiconductors, the honeycomb nanogeometry leads to rich band structures, including, in the conduction band, Dirac cones at two distinct energies and nontrivial flat bands and, in the valence band, topological edge states. These edge states are present in several electronic gaps opened in the valence band by the spin-orbit coupling and the quantum confinement in the honeycomb geometry. The lowest Dirac conduction band has S-orbital character and is equivalent to the pi-pi* band of graphene but with renormalized couplings. The conduction bands higher in energy have no counterpart in graphene; they combine a Dirac cone and flat bands because of their P-orbital character. We show that the width of the Dirac bands varies between tens and hundreds of meV. These systems emerge as remarkable platforms for studying complex electronic phases starting from conventional semiconductors. Recent advancements in colloidal chemistry indicate that these materials can be synthesized from semiconductor nanocrystals.Comment: 12 pages, 12 figure

    Topological states in multi-orbital HgTe honeycomb lattices

    Get PDF
    Research on graphene has revealed remarkable phenomena arising in the honeycomb lattice. However, the quantum spin Hall effect predicted at the K point could not be observed in graphene and other honeycomb structures of light elements due to an insufficiently strong spin-orbit coupling. Here we show theoretically that 2D honeycomb lattices of HgTe can combine the effects of the honeycomb geometry and strong spin-orbit coupling. The conduction bands, experimentally accessible via doping, can be described by a tight-binding lattice model as in graphene, but including multi-orbital degrees of freedom and spin-orbit coupling. This results in very large topological gaps (up to 35 meV) and a flattened band detached from the others. Owing to this flat band and the sizable Coulomb interaction, honeycomb structures of HgTe constitute a promising platform for the observation of a fractional Chern insulator or a fractional quantum spin Hall phase.Comment: includes supplementary materia

    Spin-glass phase transition and behavior of nonlinear susceptibility in the Sherrington-Kirkpatrick model with random fields

    Get PDF
    The behavior of the nonlinear susceptibility χ3\chi_3 and its relation to the spin-glass transition temperature TfT_f, in the presence of random fields, are investigated. To accomplish this task, the Sherrington-Kirkpatrick model is studied through the replica formalism, within a one-step replica-symmetry-breaking procedure. In addition, the dependence of the Almeida-Thouless eigenvalue λAT\lambda_{\rm AT} (replicon) on the random fields is analyzed. Particularly, in absence of random fields, the temperature TfT_f can be traced by a divergence in the spin-glass susceptibility χSG\chi_{\rm SG}, which presents a term inversely proportional to the replicon λAT\lambda_{\rm AT}. As a result of a relation between χSG\chi_{\rm SG} and χ3\chi_3, the latter also presents a divergence at TfT_f, which comes as a direct consequence of λAT=0\lambda_{\rm AT}=0 at TfT_f. However, our results show that, in the presence of random fields, χ3\chi_3 presents a rounded maximum at a temperature T∗T^{*}, which does not coincide with the spin-glass transition temperature TfT_f (i.e., T∗>TfT^* > T_f for a given applied random field). Thus, the maximum value of χ3\chi_3 at T∗T^* reflects the effects of the random fields in the paramagnetic phase, instead of the non-trivial ergodicity breaking associated with the spin-glass phase transition. It is also shown that χ3\chi_3 still maintains a dependence on the replicon λAT\lambda_{\rm AT}, although in a more complicated way, as compared with the case without random fields. These results are discussed in view of recent observations in the LiHox_xY1−x_{1-x}F4_4 compound.Comment: accepted for publication in PR
    • …
    corecore