7 research outputs found

    Basis for a predictive model of Xanthomonas arboricola pv pruni growth and infections in host plants

    Get PDF
    Xanthomonas arboricola pv. pruni (Xap) is the causal agent of bacterial spot disease of stone fruits and almond. The bacterium is considered a quarantine pathogen in Europe and it has become a new and emerging threat for European crops. As the disease is strongly influenced by the weather, a forecasting model that predicts Xap infections based on climatic conditions could be implemented in stone fruit integrated pest management. The objective of this work was to constrain the basis for the development of a predictive model of Xap growth and infections, determining the effects of pathogen, host and climatic parameters on infection and disease development. A non-pathogenic specialization of Xap and cross-infection among host species was observed, although strains isolated from peach were the most virulent in peach leaves. Xap was able to infect unwounded leaves and it was observed that the presence of wounds on the leave surface did not favour Xap penetration in peach leaves. Otherwise, the water condition of plants played an important role in Xap infections and disease development in peach. The presence of water congestion and leaf wetness 48 h before inoculation favoured Xap infections and the duration of leaf wetness after inoculation was directly correlated to disease severity. Temperature and leaf age had a significant effect on Xap infections. Temperatures above 20°C favoured Xap infections, which were basically produced in young leaves; whereas severity was significantly lower at temperatures below 15°C and in mature leavesSupported by research grants BR 2013/31 from University of Girona and FPU13/04123 from Spain MECD, and the projects AGL2013-41405-R from Spain MINECO and the European Union Seventh Framework (FP7 / 2007-2013) under the agreement n°613678 (DROPSA

    Effects of leaf wetness duration and temperature on infection of Prunus by Xanthomonas arboricola pv. pruni

    Get PDF
    Xanthomonas arboricola pv. pruni is the causal agent of bacterial spot disease of stone fruits and almond. The bacterium is distributed throughout the major stone-fruit-producing areas of the World and is considered a quarantine organism in the European Union according to the Council Directive 2000/29/EC, and by the European and Mediterranean Plant Protection Organization. The effect of leaf wetness duration and temperature on infection of Prunus by X. arboricola pv. pruni was determined in controlled environment experiments. Potted plants of the peach-almond hybrid GF-677 were inoculated with bacterial suspensions and exposed to combinations of six leaf wetness durations (from 0 to 24 h) and seven fixed temperatures (from 5 to 35°C) during the infection period. Then, plants were transferred to a biosafety greenhouse, removed from bags, and incubated at optimal conditions for disease development. Although leaf wetness was required for infection of Prunus by X. arboricola pv. pruni, temperature had a greater effect than leaf wetness duration on disease severity. The combined effect of wetness duration and temperature on disease severity was quantified using a modification of the Weibull equation proposed by Duthie. The reduced-form of Duthie's model obtained by nonlinear regression analysis fitted well to data (R = 0.87 and R2adj = 0.85), and all parameters were significantly different from 0. The estimated optimal temperature for infection by X. arboricola pv. pruni was 28.9°C. Wetness periods longer than 10 h at temperatures close to 20°C, or 5 h at temperatures between 25 and 35°C were necessary to cause high disease severity. The predictive capacity of the model was evaluated using an additional set of data obtained from new wetness duration-temperature combinations. In 92% of the events the observed severity agreed with the predicted level of infection risk. The risk chart derived from the reduced form of Duthie's model can be used to estimate the potential risk for infection of Prunus by X. arboricola pv. pruni based on observed or forecasted temperature and wetness durationMinisterio de Educación, Ciencia y Deporte (AGL2013-41405-R, FPU13/04123) of Spain (https://www.mecd.gob.es/). University of Girona (SING12/13, MPCUdG2016/085) (www. udg.edu). European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement number 613678 (DROPSA

    Interacció Pseudomonas syringae pv. syringae-perera. Factors determinants i activitat de diversos fosfonats en el desenvolupament de la malaltia

    Get PDF
    Blast of pear caused by Pseudomonas syringae pv. syringae is one of the bacterial disease that limit pear production throughout the world. Symptoms are characterized by blast of buds and blossoms wich causes significant loss of fruit production, and necrotic spots on leaves or fruits. Control of bacterial blast of pear with chemicals is difficult and is based on copper compounds and antibiontics. However, its use is limited by the low efficacy, phytotoxicity to the plant or emerging resistance of the pathogen. The activity of several phosphonates (fosetil-Al, potassium phosphonate, etephon and fosfomycin) for control of P. syringae pv. syringae infection on pear was determined in this work, and laboratory models for studying P. syringae pv. syringae-pear interaction were developedPseudomonas syringae pv. syringae és un bacteri que ha estat descrit com agent causant de diverses malalties en més de 200 especies vegetals. En perera causa la necrosi bacteriana, que afecta la majoria de zones productores de pera del món, provocant un debilitament dels arbres i una disminució de la productivitat. En el treball que es presenta s'ha determinat l’activitat de diversos fosfonats (fosetil-AI, fosfonat potàssic, etefon i fosfomicina) en el control de la infecció per P. syringae pv. syringae en perera. Per això s'han desenvolupat models d'estudi de la interacció P. syringae pv. Syringae-perera i s'han determinat els factors que afecten la interacció. Aquests models de laboratori, com que han permès conèixer aspectes concrets de la interacció hoste-patogen i definir de forma clara el tipus d'interacció, s'han aplicat a l'estudi de l'activitat dels fosfonats en la interacció P. syringae pv. syringae -perera i en el control de la malalti

    Evaluation of four whole-plant inoculation methods to analyze the pathogenicity of Erwinia amylovora under quarantine conditions

    No full text
    Four methods were tested to assess the fire-blight disease response on grafted pear plants. The leaves of the plants were inoculated with Erwinia amylovora suspensions by pricking with clamps, cutting with scissors, local infiltration, and painting a bacterial suspension onto the leaves with a paintbrush. The effects of the inoculation methods were studied in dose-time-response experiments carried out in climate chambers under quarantine conditions. A modified Gompertz model was used to analyze the disease-time relatiobbnships and provided information on the rate of infection progression (rg) and time delay to the start of symptoms (t0). The disease-pathogen-dose relationships were analyzed according to a hyperbolic saturation model in which the median effective dose (ED50) of the pathogen and maximum disease level (ymax) were determined. Localized infiltration into the leaf mesophile resulted in the early (short t0) but slow (low rg) development of infection whereas in leaves pricked with clamps disease symptoms developed late (long t0) but rapidly (high rg). Paintbrush inoculation of the plants resulted in an incubation period of medium length, a moderate rate of infection progression, and low ymax values. In leaves inoculated with scissors, fire-blight symptoms developed early (short t0) and rapidly (high rg), and with the lowest ED50 and the highest yma

    Effects of leaf wetness duration and temperature on infection of Prunus by Xanthomonas arboricola pv. pruni

    No full text
    Xanthomonas arboricola pv. pruni is the causal agent of bacterial spot disease of stone fruits and almond. The bacterium is distributed throughout the major stone-fruit-producing areas of the World and is considered a quarantine organism in the European Union according to the Council Directive 2000/29/EC, and by the European and Mediterranean Plant Protection Organization. The effect of leaf wetness duration and temperature on infection of Prunus by X. arboricola pv. pruni was determined in controlled environment experiments. Potted plants of the peach-almond hybrid GF-677 were inoculated with bacterial suspensions and exposed to combinations of six leaf wetness durations (from 0 to 24 h) and seven fixed temperatures (from 5 to 35°C) during the infection period. Then, plants were transferred to a biosafety greenhouse, removed from bags, and incubated at optimal conditions for disease development. Although leaf wetness was required for infection of Prunus by X. arboricola pv. pruni, temperature had a greater effect than leaf wetness duration on disease severity. The combined effect of wetness duration and temperature on disease severity was quantified using a modification of the Weibull equation proposed by Duthie. The reduced-form of Duthie's model obtained by nonlinear regression analysis fitted well to data (R = 0.87 and R2adj = 0.85), and all parameters were significantly different from 0. The estimated optimal temperature for infection by X. arboricola pv. pruni was 28.9°C. Wetness periods longer than 10 h at temperatures close to 20°C, or 5 h at temperatures between 25 and 35°C were necessary to cause high disease severity. The predictive capacity of the model was evaluated using an additional set of data obtained from new wetness duration-temperature combinations. In 92% of the events the observed severity agreed with the predicted level of infection risk. The risk chart derived from the reduced form of Duthie's model can be used to estimate the potential risk for infection of Prunus by X. arboricola pv. pruni based on observed or forecasted temperature and wetness durationMinisterio de Educación, Ciencia y Deporte (AGL2013-41405-R, FPU13/04123) of Spain (https://www.mecd.gob.es/). University of Girona (SING12/13, MPCUdG2016/085) (www. udg.edu). European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement number 613678 (DROPSA

    A model for predicting Xanthomonas arboricola pv. pruni growth as a function of temperature

    No full text
    Abstract A two-step modeling approach was used for predicting the effect of temperature on the growth of Xanthomonas arboricola pv. pruni, causal agent of bacterial spot disease of stone fruit. The in vitro growth of seven strains was monitored at temperatures from 5 to 35˚C with a Bioscreen C system, and a calibrating equation was generated for converting optical den- sities to viable counts. In primary modeling, Baranyi, Buchanan, and modified Gompertz equations were fitted to viable count growth curves over the entire temperature range. The modified Gompertz model showed the best fit to the data, and it was selected to estimate the bacterial growth parameters at each temperature. Secondary modeling of maximum specific growth rate as a function of temperature was performed by using the Ratkowsky model and its variations. The modified Ratkowsky model showed the best goodness of fit to maximum specific growth rate estimates, and it was validated successfully for the seven strains at four additional temperatures. The model generated in this work will be used for predicting temperature-based Xanthomonas arboricola pv. pruni growth rate and derived potential daily doublings, and included as the inoculum potential component of a bacterial spot of stone fruit disease forecasterThis research was supported, in part, by grants from the Ministerio de Educación, Ciencia y Deporte (AGL2013-41405-R and from the University of Girona (SING12/13 and MPCUdG2016/085. Gerard Morales was the recipient of predocotoral fellowships from the University of Girona (BR 2013/31) and from MECD (FPU13/04123) from Spai

    Epidemiological Features and Trends of Brown Spot of Pear Disease Based on the Diversity of Pathogen Populations and Climate Change Effects

    No full text
    Brown spot of pear, caused by the fungus Stemphylium vesicarium, is an emerging disease of economic importance in several pear-growing areas in Europe. In recent years, new control strategies combining sanitation practices and fungicide applications according to developed forecasting models have been introduced to manage the disease. However, the pathogenic and saprophytic behavior of this pathogen makes it difficult to manage the disease. In addition, climate change can also result in variations in the severity and geographical distribution of the disease. In this study, ecological and epidemiological aspects of brown spot of pear disease related to inoculum characterization and climate change impact were elucidated. The pathogenic variation in S. vesicarium populations from pear orchards and its relationship to inoculum sources (air samples, leaf debris, and infected host and nonhost tissues) was determined using multivariate analysis. In total, six variables related to infection and disease development on cultivar Conference pear detached leaves of 110 S. vesicarium isolates were analyzed. A high proportion of isolates (42%) were nonpathogenic to pear; 85% of these nonpathogenic isolates were recovered from air samples. Most isolates recovered from lesions (93%) and pseudothecia (83%) were pathogenic to pear. A group of pathogenic isolates rapidly infected cultivar Conference pear leaves resulted in disease increase that followed a monomolecular model, whereas some S. vesicarium isolates required a period of time after inoculation to initiate infection and resulted in disease increase that followed a logistic model. The latter group was mainly composed of isolates recovered from pseudothecia on leaf debris, whereas the former group was mainly composed of isolates recovered from lesions on pear fruit and leaves. The relationship between the source of inoculum and pathogenic/aggressiveness profile was confirmed by principal component analysis. The effect of climate change on disease risk was analyzed in two pear-growing areas of Spain under two scenarios (A2 and B1) and for three periods (2005 to 2009, 2041 to 2060, and 2081 to 2100). Simulations showed that the level of risk predicted by BSPcast model increased to high or very high under the two scenarios and was differentially distributed in the two regions. This study is an example of how epidemiological models can be used to predict not only the onset of infections but also how climate change could affect brown spot of pearThis research was supported in part by grants from Ministerio de Educación y Ciencia (AGL2009-09829/AGR) of Spain; from the University of Girona (BR10/17 and MPCUdG2016/085); and from the CIRIT of the Catalonian Government (2009SGR812
    corecore