235 research outputs found

    Curcumin Protects -SH Groups and Sulphate Transport after Oxidative Damage in Human Erythrocytes

    Get PDF
    Background/Aims: Erythrocytes, continuously exposed to oxygen pressure and toxic compounds, are sensitive to oxidative stress, namely acting on integral Band 3 protein, with consequences on cell membranes deformability and anion transport efficiency. The aim of the present investigation, conducted on human erythrocytes, is to verify whether curcumin (1 or 10µM), a natural compound with proved antioxidant properties, may counteract Band 3-mediated anion transport alterations due to oxidative stress. Methods: Oxidative conditions were induced by exposure to, alternatively, either 2 mM N-ethylmaleimide (NEM) or pH-modified solutions (6.5 and 8.5). Rate constant for SO4= uptake and -SH groups estimation were measured to verify the effect of oxidative stress on anion transport efficiency and erythrocyte membranes. Results: After the exposure of erythrocytes to, alternatively, NEM or pH-modified solutions, a significant decrease in both rate constant for SO4= uptake and -SH groups was observed, which was prevented by curcumin, with a dose-dependent effect. Conclusions: Our results show that: i) the decreased efficiency of anion transport may be due to changes in Band 3 protein structure caused by cysteine -SH groups oxidation, especially after exposure to NEM and pH 6.5; ii) 10 µM Curcumin is effective in protecting erythrocytes from oxidative stress events at level of cell membrane transport

    Sulphate and Chloride-Dependent Potassium Transport in Human Erythrocytes are Affected by Crude Venom from Nematocysts of the Jellyfish Pelagia noctiluca

    Get PDF
    Background: It has been reported that biologically active compounds extracted from Cnidaria venom may induce damage by oxidative stress. Erythrocytes are constantly exposed to oxidative stresses, which can contribute to sulphydril (SH-) group oxidation and cell membrane deformability accompanied with activation of K-Cl co-transport and inhibition of anion transport. In this regard, Band 3 protein is responsible for mediating the electroneutral exchange of chloride (Cl-) for bicarbonate (HCO3-), particularly in erythrocytes, where it is the most abundant membrane protein. The aim of this study was to elucidate the effect of crude venom extracted from Pelagia noctiluca nematocysts on Band 3 -mediated anion transport in human erythrocytes. Methods: Erythrocytes were tested for SO42- uptake, K+ efflux, glutathione (GSH) levels and concentration of SH- groups. Results: The rate constant of SO42- uptake decreased progressively to 58% of control with increasing venom doses, and showed a 28% decrease after 2 mM NEM treatment. These effects can be explained by oxidative stress, which was reflected by decreased GSH levels in venom-treated erythrocytes. Hence, the decreased efficiency of anion transport may be due to changes in Band 3 structure caused by SH-group oxidation and reduced GSH concentration. In addition, an increased Cl--dependent K+ efflux was observed in venom-treated erythrocytes. Conclusion: Our results suggest that crude venom from Pelagia noctiluca alters cell membrane transport in human erythrocytes

    The venom and the toxicity of Pelagia noctiluca (Cnidaria: Scyphozoa). A review of three decades of research in Italian laboratories and future perspectives

    Get PDF
    Recurrent outbreaks of Pelagia noctiluca and health problems consequent to stings were recorded during the last decades. This phenomenon forced some Italian University laboratories to study this cnidarian. The first studies concerned the distribution, biochemical composition and morphology of nematocysts of Pelagia noctiluca. The discharge mechanism of nematocysts was defined starting from early 1980s when enzymes, cations, anions, and pH were observed to have an influence on this process. Notably, trypsin, extreme pH values, some anions (I–, Cl–, SCN–), and thioglycolate were seen to induce, while La3+ and Gd3+ to prevent, nematocyst discharge. The discharge of both in situ and isolated nematocyst was found to be Ca2+ dependent. Furthermore, Pelagia noctiluca nematocysts were seen to retain their discharging capacity in distilled water. The toxicological evaluations were carried out mainly using the crude venom from Pelagia noctiluca because, unfortunately, to date the composition of venom remains unknown. Hemolytic and cytotoxic properties of crude venom have been evaluated on erythrocytes and cultured guinea-pig fibroblasts, mouse fibroblasts, and cancer (neuroblastoma) cells. The activity of Pelagia noctiluca venom on other cnidarians has been also assessed. The crude venom induced apoptosis by reactive oxygen species generation and decrease in mitochondrial transmembrane potential, loss of mitochondrial integrity, and alteration of cell membrane permeability. A pore-forming action mechanism on mitochondrial membrane with oxidative damage was also suggested. The protective activity of some compounds against envenomations has been also evaluated. Future challenges will concern the attempts to characterize the venom and to perform a wider screening of cytotoxicity induced to normal and cancer cells

    Mechanisms of hyposmotic volume regulation in isolated nematocytes of the anthozoan Aiptasia diaphana.

    Get PDF
    The nature and role of potassium (K) and water transport mediating hyposmotically-induced regulatory volume decrease (RVD) were studied in nematocytes dissociated with 605 mM thiocyanate from aconti

    oxidative stress affects responsiveness to hypotonicity of renal cells

    Get PDF
    Oxidative stress plays a critical role in the pathophysiology of several kidney diseases and is the consequence of alterations like ischemic events. The regulatory volume decrease (RVD) is an homeostatic response essential to many cells, including renal cells, to counteract changes in the osmolarity of the external medium. The aim of the present work is to verify whether oxidative stress affects RVD in a model of renal cells (human embryonic kidney cells, HEK 293 Phoenix). To accomplish this aim, the experimental procedure consisted in: i) cell culture preparation and treatment with 200 μM H2O2; and ii) measurement of cell volume changes in isotonic conditions or following hypotonic stress. H2O2 added to the extracellular isotonic solution induced a significant reduction in cell volume, and added to the extracellular hypotonic solution dramatically impaired the expected osmotic cell swelling. Pre-incubation of cells in an extracellular isotonic solution containing H2O2 prevented cell from swelling after hypotonic stress application. In conclusion, H2O2 leads to cell shrinkage in isotonic conditions, inhibits the hypotonicity-induced cell swelling and consequently prevents RVD, hypothetically due to an activation of transport pathways determining ion loss and, in turn, water efflux. Cell shrinkage in isotonic conditions is a hallmark of apoptosis and is known as the apoptotic volume decrease

    Time to act on childhood obesity: the use of technology

    Get PDF
    Childhood obesity is rapidly increasing worldwide and there is an urgent need to implement treatment and prevention programs. Over the last decade, in addition to increasing rates of childhood obesity, we have also observed rapid technological and digital development. The Covid-19 pandemic has largely contributed to both expansions but has also allowed an opening towards a broader vision of medicine, through new therapeutic opportunities such as mobile healthcare. The digital and technological delivery of obesity prevention and treatment programs can represent an innovative tool to support children and families to overcome some limitations and barriers such as the accessibility of programs that prevent them from adopting healthy lifestyle changes. This review aimed to summarize the impact of different digital interventions for children and adolescent affected by obesity

    Growth Trajectory and Adult Height in Children with Nonclassical Congenital Adrenal Hyperplasia

    Get PDF
    Background: Children with nonclassical congenital adrenal hyperplasia (NCCAH) often present increased growth velocity secondary to elevation of adrenal androgens that accelerates bone maturation and might compromise adult height (AH). Objective: The aim of the study was to analyze prognostic factors affecting growth trajectory (GT) and AH in children with NCCAH. Methods: The study was a retrospective, multicentric study. The study population consisted of 192 children with a confirmed molecular diagnosis of NCCAH, followed by pediatric endocrinology centers from diagnosis up to AH. Clinical records were collected and analyzed. AH (standard deviation score; SDS), pubertal growth (PG) (cm), GT from diagnosis to AH (SDS), and AH adjusted to target height (TH) (AH-TH SDS) were evaluated as outcome indicators using stepwise linear regression models. Results: The stepwise linear regression analysis showed that AH and AH-TH were significantly related to chronological age (CA) (p = 0.008 and 0.016), bone age (BA)/CA ratio (p = 0.004 and 0.001), height (H) (p < 0.001 for both parameters) at NCCAH diagnosis, and TH (p = 0.013 and <0.001). PG was higher in males than in females (22.59 ± 5.74 vs. 20.72 ± 17.4 cm, p = 0.002), as physiologically observed, and was positively related to height (p = 0.027), negatively to BMI (p = 0.001) and BA/CA ratio (p = 0.001) at NCCAH diagnosis. Gender, genotype, biochemical data, and hydrocortisone treatment did not significantly impair height outcomes of these NCCAH children. Conclusions: The results of this study suggest that AH and GT of NCCAH patients are mainly affected by the severity of phenotype (CA, BA/CA ratio, and H) at the time of diagnosis. © 2020 S. Karger AG. All rights reserved

    Intratumor Heterogeneity of ALK-Rearrangements and Homogeneity of EGFR-Mutations in Mixed Lung Adenocarcinoma

    Get PDF
    BACKGROUND: Non Small Cell Lung Cancer is a highly heterogeneous tumor. Histologic intratumor heterogeneity could be 'major', characterized by a single tumor showing two different histologic types, and 'minor', due to at least 2 different growth patterns in the same tumor. Therefore, a morphological heterogeneity could reflect an intratumor molecular heterogeneity. To date, few data are reported in literature about molecular features of the mixed adenocarcinoma. The aim of our study was to assess EGFR-mutations and ALK-rearrangements in different intratumor subtypes and/or growth patterns in a series of mixed adenocarcinomas and adenosquamous carcinomas. METHODS: 590 Non Small Cell Lung Carcinomas tumor samples were revised in order to select mixed adenocarcinomas with available tumor components. Finally, only 105 mixed adenocarcinomas and 17 adenosquamous carcinomas were included in the study for further analyses. Two TMAs were built selecting the different intratumor histotypes. ALK-rearrangements were detected through FISH and IHC, and EGFR-mutations were detected through IHC and confirmed by RT-PCR. RESULTS: 10/122 cases were ALK-rearranged and 7 from those 10 showing an intratumor heterogeneity of the rearrangements. 12/122 cases were EGFR-mutated, uniformly expressing the EGFR-mutated protein in all histologic components. CONCLUSION: Our data suggests that EGFR-mutations is generally homogeneously expressed. On the contrary, ALK-rearrangement showed an intratumor heterogeneity in both mixed adenocarcinomas and adenosquamous carcinomas. The intratumor heterogeneity of ALK-rearrangements could lead to a possible impact on the therapeutic responses and the disease outcomes
    • …
    corecore