6 research outputs found

    CHANG-ES X: Spatially-resolved Separation of Thermal Contribution from Radio Continuum Emission in Edge-on Galaxies

    Full text link
    We analyze the application of star formation rate (SFR) calibrations using Hα\alpha and 22 micron infrared imaging data in predicting the thermal radio component for a test sample of 3 edge-on galaxies (NGC 891, NGC 3044, and NGC 4631) in the Continuum Halos in Nearby Galaxies -- an EVLA Survey (CHANG-ES). We use a mixture of Hα\alpha and 24 micron calibration from Calzetti et al. (2007), and a linear 22 micron only calibration from Jarrett et al. (2013) on the test sample. We apply these relations on a pixel-to-pixel basis to create thermal prediction maps in the two CHANG-ES bands: L- and C-band (1.5 GHz and 6.0 GHz, respectively). We analyze the resulting non-thermal spectral index maps, and find a characteristic steepening of the non-thermal spectral index with vertical distance from the disk after application of all methods. We find possible evidence of extinction in the 22 micron data as compared to 70 micron Spitzer Multband Imaging Photometer (MIPS) imaging in NGC 891. We analyze a larger sample of edge-on and face-on galaxy 25 micron to 100 micron flux ratios, and find that the ratios for edge-ons are systematically lower by a factor of 1.36, a result we attribute to excess extinction in the mid-IR in edge-ons. We introduce a new calibration for correcting the Hα\alpha luminosity for dust when galaxies are edge-on or very dusty.Comment: Accepted for publication in ApJ on December 24, 2017, 23 pages, 19 figure

    XIV. Cosmic-ray propagation and magnetic field strengths in the radio halo of NGC4631

    Get PDF
    Mora-Partiarroyo SC, Krause M, Basu A, et al. XIV. Cosmic-ray propagation and magnetic field strengths in the radio halo of NGC4631. ASTRONOMY & ASTROPHYSICS. 2019;632: A10.Aims. NGC4631 is an interacting galaxy that exhibits one of the largest, gaseous halos observed among edge-on galaxies. We aim to examine the synchrotron and cosmic-ray propagation properties of its disk and halo emission with new radio continuum data. Methods. Radio continuum observations of NGC4631 were performed with the Karl G. Jansky Very Large Array at C-band (5.99 GHz) in the C and D array configurations, and at L-band (1.57 GHz) in the B, C, and D array configurations. Complementary observations of NGC4631 with the E ffelsberg telescope were performed at 1.42 and 4.85 GHz. The interferometric total intensity data were combined with the single-dish E ffelsberg data in order to recover the missing large-scale total power emission. The thermal and nonthermal components of the total radio emission were separated by estimating the thermal contribution through the extinction-corrected H alpha emission. The Hff radiation was corrected for extinction using a linear combination of the observed H alpha and 24 mu m data. Results. NGC4631 has a global thermal fraction at 5.99 (1.57) GHz of 14 +/- 3% (5.4 +/- 1.1%). The mean scale heights of the total emission in the radio halo (thick disk) at 5.99 (1.57) GHz are 1 .79 +/- 0 .54 kpc (1 .75 +/- 0 .27 kpc) and have about the same values for the synchrotron emission. The total magnetic field of NGC4631 has a mean strength of similar or equal to 9 mu G in the disk, and a mean strength of similar or equal to 7 mu G in the halo. We also studied a double-lobed background radio galaxy southwest of NGC4631, which is an FR II radio galaxy according to the distribution of spectral index across the lobes. Conclusions. From the halo scale heights we estimated that the radio halo is escape-dominated with convective cosmic ray propagation, and conclude that there is a galactic wind in the halo of NGC4631

    CHANG-ES. XV. Large-scale magnetic field reversals in the radio halo of NGC 4631

    Get PDF
    International audienceAims: NGC 4631 is an interacting galaxy which exhibits one of the largest gaseous halos observed among edge-on galaxies. We aim to examine the synchrotron and polarization properties of its disk and halo emission with new radio continuum data.Methods: Radio continuum observations of NGC 4631 were performed with the Karl G. Jansky Very Large Array at C-band (5.99 GHz) in the C and D array configurations, and at L-band (1.57 GHz) in the B, C, and D array configurations. The Rotation Measure Synthesis algorithm was utilized to derive the polarization properties.Results: We detected linearly polarized emission at C-band and L-band. The magnetic field in the halo is characterized by strong vertical components above and below the central region of the galaxy. The magnetic field in the disk is only clearly seen in the eastern side of NGC 4631, where it is parallel to the plane of the major axis of the galaxy. We detected for the first time a large-scale, smooth Faraday depth pattern in a halo of an external spiral galaxy, which implies the existence of a regular (coherent) magnetic field. A quasi-periodic pattern in Faraday depth with field reversals was found in the northern halo of the galaxy.Conclusions: The field reversals in the northern halo of NGC 4631, together with the observed polarization angles, indicate giant magnetic ropes with alternating directions. To our knowledge, this is the first time such reversals are observed in an external galaxy.Reduced polarized intensity images are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/632/A1

    CHANG-ES. XXII. Coherent magnetic fields in the halos of spiral galaxies

    Get PDF
    International audienceContext. The magnetic field in spiral galaxies is known to have a large-scale spiral structure along the galactic disk and is observed as X-shaped in the halo of some galaxies. While the disk field can be well explained by dynamo action, the three-dimensional structure of the halo field and its physical nature are still unclear.Aims: As first steps towards understanding the halo fields, we want to clarify whether or not the observed X-shaped field is a wide-spread pattern in the halos of spiral galaxies. We also aim to investigate whether these halo fields are simply turbulent fields ordered by compression or shear (anisotropic turbulent fields), or have a large-scale regular structure.Methods: Analysis of the Faraday rotation in the halo is used as a tool to distinguish anisotropic turbulent fields from large-scale magnetic fields. However, this has been challenging until recently because of the faint halo emission in linear polarization. Our sensitive VLA broadband observations in C-band and L-band of 35 spiral galaxies seen edge-on (called CHANG-ES) allowed us to perform rotation measure synthesis (RM synthesis) in their halos and to analyze the results. We further accomplished a stacking of the observed polarization maps of 28 CHANG-ES galaxies in C-band.Results: Though the stacked edge-on galaxies were of different Hubble type, and had differing star formation activity and interaction activity, the stacked image clearly reveals an X-shaped structure of the apparent magnetic field. We detected a large-scale (coherent) halo field in all 16 galaxies that have extended polarized emission in their halos. We detected large-scale field reversals in all of their halos. In six galaxies, these are along lines that are approximately perpendicular to the galactic midplane (vertical RMTL) with about 2 kpc separation. Only in NGC 3044 and possibly in NGC 3448 did we observe vertical giant magnetic ropes (GMR) similar to those detected recently in NGC 4631.Conclusions: The observed X-shaped structure of the halo field seems to be an underlying feature of spiral galaxies. It can be regarded as the two-dimensional projection of the regular magnetic field which we found to have scales of typically 1 kpc or larger observed over several kiloparsecs. The ordered magnetic field extends far out in the halo and beyond. We detected large-scale magnetic field reversals in the halo that may indicate that GMR are more or less tightly wound. With these discoveries, we hope to stimulate model simulations for the halo magnetic field that should also explain the determined asymmetry of the polarized intensity (PI)
    corecore