9 research outputs found

    Real-time near replica detection over massive streams of shared photos

    Get PDF
    Aquest treball es basa en la detecció en temps real de repliques d'imatges en entorns distribuïts a partir de la indexació de vectors de característiques locals

    Real-time near replica detection over massive streams of shared photos

    Get PDF
    Aquest treball es basa en la detecció en temps real de repliques d'imatges en entorns distribuïts a partir de la indexació de vectors de característiques locals

    New hybrid kernel architectures for deep learning

    Get PDF
    In this work we explore the possibilities of combining neural network architectures and kernel methods by introducing hybrid kernel blocks. We present hybrid architectures which can be trained as traditional neural networks and introduce novel training and regularization methodologies for them

    Real-time near replica detection over massive streams of shared photos

    No full text
    Aquest treball es basa en la detecció en temps real de repliques d'imatges en entorns distribuïts a partir de la indexació de vectors de característiques locals

    New hybrid kernel architectures for deep learning

    No full text
    In this work we explore the possibilities of combining neural network architectures and kernel methods by introducing hybrid kernel blocks. We present hybrid architectures which can be trained as traditional neural networks and introduce novel training and regularization methodologies for them

    Predicting severe pneumonia in the emergency department: a global study of the Pediatric Emergency Research Networks (PERN)—study protocol

    No full text
    Introduction Pneumonia is a frequent and costly cause of emergency department (ED) visits and hospitalisations in children. There are no evidence-based, validated tools to assist physicians in management and disposition decisions for children presenting to the ED with community-acquired pneumonia (CAP). The objective of this study is to develop a clinical prediction model to accurately stratify children with CAP who are at risk for low, moderate and severe disease across a global network of EDs.Methods and analysis This study is a prospective cohort study enrolling up to 4700 children with CAP at EDs at ~80 member sites of the Pediatric Emergency Research Networks (PERN; https://pern-global.com/). We will include children aged 3 months to <14 years with a clinical diagnosis of CAP. We will exclude children with hospital admissions within 7 days prior to the study visit, hospital-acquired pneumonias or chronic complex conditions. Clinical, laboratory and imaging data from the ED visit and hospitalisations within 7 days will be collected. A follow-up telephone or text survey will be completed 7–14 days after the visit. The primary outcome is a three-tier composite of disease severity. Ordinal logistic regression, assuming a partial proportional odds specification, and recursive partitioning will be used to develop the risk stratification models.Ethics and dissemination This study will result in a clinical prediction model to accurately identify risk of severe disease on presentation to the ED. Ethics approval was obtained for all sites included in the study. Cincinnati Children’s Hospital Institutional Review Board (IRB) serves as the central IRB for most US sites. Informed consent will be obtained from all participants. Results will be disseminated through international conferences and peer-reviewed publications. This study overcomes limitations of prior pneumonia severity scores by allowing for broad generalisability of findings, which can be actively implemented after model development and validation

    Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356

    No full text
    non present

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore