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Abstract

Facultat d’Informàtica de Barcelona (FIB)

Department of Computer Architecture

by Daniel Mora de Checa

Being able to identify whether an image is a modified version of another is a common

problem in the web and useful in spam detection, redundant information detection or

copyright infringement detection. In this work we present the distributed, scalable and

real-time implementation of an image near replica detection.

Local features have been used to detect and describe interest points by building invariant

feature vectors around them. Filtering has been used to discard weak image features and

afterwards they have been sketched into binary representations to embed them into a

Hamming space and to reduce their dimensionality. To estimate the similarity between

two images we compute the similarity between their features by discarding those whose

Hamming distance is below a threshold. An approximation of the Hamming distance has

been used to reduce the search space to just a small amount of candidates.

Results show that we can detect multiple common image modifications achieving precisions

below 0.01 within few seconds on both memory and disk using resources efficiently.
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Chapter 1

Introduction

1.1 Motivation

Being able to identify if an image is a replica of another one is a common problem in the

web. We can see how modification of images are usually spread around social media or

how duplicate results are retrieved in image search engines.

Precise near replica detection can be achieved with high computational, memory costs

and time. However, considering the big growth of the data and the need to find real-time

solutions, we cannot afford these burdens. Though it has not been one of the main focus of

work in computer vision and information retrieval, it has been tackled from many different

sides finding promising solutions but there is no public implementation fitting these needs.

In this work we want to design and build a framework capable of identifying replicas in

a feasible amount of time time and being able to scale easily using low memory and disk

storage requirements.

1.2 What is a replica?

Before getting into details we must define what a replica is. We consider a replica as an

image modification that still allows the user to identify the original picture. However,

this abstract description may be too complex and somehow impossible to translate into

a machine and it is usually difficult to draw the line between similarity and replication.

Figure 1.1 shows some example of image replicas.

To be able to tune and evaluate our replica detection system we defined a set of image

modifications (e.g. cropping, compression, channel modification) that, at most, we want

to be able to identify and always trying to generalize to any type of image transformations

1



Real-Time Near Replica Detection Over Massive Streams Of Shared Photos 2

(except from viewport changes, that we have not considered as replicas). We applied these

transformation on random images to conform the UPCReplica data set.

Figure 1.1: Three examples of image replicas from the original one (left)

1.3 Why do we need to detect replicas?

Identifying replicas can be useful in many different applications. Here are some examples:

• Distribution of illicit content and copyright infringement. Illicit content (e.g. of-

fensive, racist, explicit violence) from sites could be easily identified if images are

queried against a data base of common infringements. Copyright violations could

also be tracked the same way.

• Image spam detection: spam usually is presented as undesired text messages received

inside emails. But there is also another type of spam where the unsolicited content

is embedded into images, allowing the senders to break through text-based spam

detectors. To avoid being detected by image-based detectors, modifications of the

original spam image are used. Though image spam is rarely used nowadays, near

replica detection may help to reduce its effectiveness.

• Reduction of the redundancy of the web: as stated in [4] nearly 40% of the web is

already replicated. Memory and computing resources are wasted on information that

already exists and identifying which data is replicated could lead to save resources

and help for a better management of them. An example of this application can be

found in search engines. Figure 1.2 shows the Google image search result of the

query ’Persistence of memory’ from Salvador Dali. As we can see, there are lots

of results containing exactly the same image. Many decisions can be taken from

the assumption that a group of images are replicas of each other (e.g. it would be

friendly for the user to group all the search results that are related or the site owner

could consider not to store/retrieve all of them).
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Figure 1.2: Google image top results from ’Persistence of memory’

1.4 Technologies used

For the implementation of our system we have both developed and tested on a single ma-

chine with a Xubuntu 12.0.4 operative system, 4GB of RAM memory and a Pentium(R)

Dual Core T4300 2.10 Ghz. We have used the Eclipse Indigo 3.7.2 Ide with Maven in-

tegration for the Java (Java 7) development and OpenCV 2.3.9 for the image processing

functions.

Apache Spark 1.2.0 for Hadoop 2.2 has been chosen the distributed computational frame-

work and HBase has been set as the data base management system. Code has been under

versioning using Git and all plots, data analysis and log parsing have been drawn with

RStudio.

More details about these technologies and why have chosen them can be found in Chap-

ter 4.

1.5 Requirements

In this section we describe the functional and non-functional requirements identified during

the scheduling process.
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Code Title Description

NFR1 Real-time The system must respond a

replica detection query in a real-

time manner

NFR2 Good performance Performance of the system must

be close to the state-of-the-art

NFR3 Open source Tools used and outcomes of the

project must be open source

NFR4 Project Outcomes Generate a dataset and/or a

publication from our work

NFR5 Media integration Integration of our system with

well-known social media plat-

forms

NFR6 Deployment Deployment of the near replica

detector in a real cluster

NFR7 Scalability The performance and the effi-

ciency of the detector cannot be

affected by increasing the size of

the images handled

NFR8 Modularity Implementation of the detector

in a modular way so its compo-

nents can be reused and easily

miantained and debugged

Table 1.1: Non functional requirements of the replica detector

1.5.1 Non-Functional requirements

The non-functional requirements represent what our system must be able to accomplish.

The list of non-functional requirements can be found in Table 1.1.

The requirements NFR1, NFR2 and NFR7 become critical points and must be accom-

plished and the rest are tagged as optional.

1.5.2 Functional requirements

The functional requirements of a system describe how the system should behave and

support the non-functional requirements detailed. The list of the considered functional

requirements of our system is shown in Table 1.2.

These functional requirements support the critical requirements pointed in the previous

section.
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Code Title Description

FR1 Real-time The system must respond, on

average, within 3 seconds for a

query

FR2 Good performance System must have a perfor-

mance better than the random

guess, expecting true positive

rate above 50% and false posi-

tive rate below 1%

Table 1.2: Functional requirements of the replica detector

1.6 Scheduling

The projects is intended to last for 53 weeks, with 15 hours of dedication per week and

considering 3 weeks of holidays. This makes a total of 750 hours, starting from May 15th

2014 and ending on May 31th 2015. The dedication per weeks is detailed as follows:

• Weeks from 25/05/14 to 16/08/14: Study and analysis of the state-of-the-art and

documentation related. Selection of some existing replica detectors, study of the

techniques that are common in this field and review of the evolution of the near

replica detectors.

• Week from 17/08/14 to 23/08/14: Summer holidays.

• Weeks from 24/08/14 to 06/09/14: Continuation of the first task.

• Weeks from 07/09/14 to 27/09/14: Definition of the first approach of the overview

of the system to implement as well as the technologies to be used and the revision

of the planning.

• Weeks from 07/09/14 to 27/09/14: Setting up of the development environment (e.g.

Eclipse, Maven and OpenCV) and creation of the code repository.

• Weeks from 05/10/14 to 01/11/14: Generation of a dataset to work with during the

project and that will be also used for evaluation purposes.

• Week from 02/11/14 to 08/11/14: Coding of classes to extract image descriptors.

• Weeks from 09/11/14 to 29/11/14: Analysis of image features. Keypoint detectors

existing are compared and one of them is selected to be used throughout the work.

• Week from 30/11/14 to 06/12/14: Set up of the HBase environment and coding of

dummy examples.
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• Weeks from 07/12/14 to 20/12/14: Implementation of the sketching algorithm. Gen-

eration of the Java code capable of converting image features into binary represen-

tations.

• Weeks from 21/12/15 to 10/01/15: Christmas holidays.

• Weeks from 11/01/15 to 30/01/15: Implementation of the indexing structure, dec-

laration of HBase tables and implementation of the Java client to interact with this

structure.

• Week from 01/02/15 to 07/02/15: Installation of Spark and coding of first simple

examples.

• Weeks from 08/02/15 to 21/03/15: Integration of the functionalities implemented

so far into Spark (batch and streaming). All tasks in our system that can be easily

distributed are redesigned to be compatible with the framework.

• Weeks from 22/03/15 to 11/04/15: Execution of tests. In these weeks, all evaluation

tests designed in the beginning of the project are launched and results are gathered.

• Weeks from 12/04/15 to 09/05/15: Writing of the first draft of the documentation.

• Week from 10/05/2015 to 16/05/2015: Revision of the documentation.

• Week from 17/05/2015 to 23/05/2015: Correction of the documentation.

• Week from 24/05/2015 to 31/05/2015: Last version and refining of the documenta-

tion.

1.7 Costs

The costs of the projects is the sum of three areas: human resources, hardware and

software.

1.7.1 Human resources

Though all tasks in this work have been carried out by the same person we have estimated

the cost as we were working in a development team. Table 1.3 show the detailed costs

related to human resources.
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Role Dedication hours Income per hour (e) Total (e)

Research analyst 405 25 10, 125

Developer 345 18 6, 210

Total 16, 335

Table 1.3: Estimation of the costs derived from the human resources

1.7.2 Hardware resources

This project has been developed and tested on the same machine. However, in a real

context we would also need a computing cluster where to deploy our work. Instead of

buying and setting a server up we selected to estimate the costs of a cloud computing

platform such as Amazon EC2. Hardware costs are summarized in Table 1.4, that are

dependent on the computing time that we need to consume.

Resource Cost (e)

Development platform 521.13

Amazon EC2 0.29 per hour

Total 521.13 + 0.29 per hour
computed

Table 1.4: Estimation of the costs derived from the hardware resources

1.7.3 Software resources

As stated in the requirements, we decided to stick to open source tools and there is no

cost originated by software licenses.

1.7.4 Total costs

The sum of total costs, shown in Table 1.5, is 16, 856.13 e, and adding 0.29 hours to each

hour computed in the cloud.

Type of cost Cost (e)

Human costs 16, 335

Hardware costs 521.13

Software 0

Total 16, 856.13

Table 1.5: Total estimation of the costs. Cloud computing time per hour not included
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1.8 Summary

In Chapter 2 we review work done on near replica image detection. Chapter 3 describes

the theoretical framework of our implementation, detailed in Chapter 4. Evaluation of

our system can be found in Chapter 5 and conclusions and future work can be found in

Chapter 6.



Chapter 2

Previous work

2.1 Early work

Approaches related to image content retrieval can be already found in the early 90s [5] [6],

where systems were able to search for images depending on characteristics as shape, color

or texture in small databases. Though they focused on a different problem, methodologies

and use cases were close to the ones in near replica detection.

Works about near replica detection also appeared in the 90s. By then we could find iconic

picture detectors [7] and replica detectors based on hand sketching in low-resolution images

[8]. Work in [9] in 1995 already shows detectors for simple image transformations such

as resampling using hash-table like indexing structures. All these detectors presented use

wavelets or colour features.

Watermarking [10] also appeared to be a methodology to detect image replication but

results impractical since it needed the original image to be manipulated. Other works,

such as [11], integrate machine learning algorithms to build models trained offline for each

reference image.

2.2 The growth of the Internet and the scalability curse

The overwhelming growth of data and users during the last decade (from 360 millions in

2000 to 2802 millions of users in 2014 [9]) and in the present forced new approaches to

show up focusing on three main goals: ease to scale, high precision and efficiency.

9
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2.2.1 State of the art: the bag-of-words

The bag-of-words approach became the state-of-the-art: image are represented as a vector

of visual words belonging to a dictionary computed offline using k-means. This technique

relies on the quantization of the images features into visual words, assigning each image

feature to the closest one in the dictionary. This procedure achieves to reduce the dimen-

sionality of the features by losing part of its discriminative power. Images are represented

by a histogram of the appearance of those visual words in it. The similarity between

images is estimated by the similarity of the set of their visual words. This information

is usually structured using inverted index and measures as tf-idf or voting are used to

evaluate the similarity of the sets.

[12] is an example of this approach, that uses bundled SIFT features (features are grouped

into groups to build richer and broader ones) and a dictionary of a million visual words.

Visual words are stored using inverted index structures and a voting scheme using TF-IDF

is performed to retrieve the results. Extra geometric verification is done at the end of the

process on the 300 top results and an embedded hamming representation of 24 bits is used

for filtering out the high amount of false positives. Similar work can be found in [13].

2.2.2 Similarity by hashing

Another branch of works uses hashing procedures for similarity. A common approach

in this type of systems is to implement several hash tables where indexed features are

organized within buckets gathering features that are similar. For each descriptor vector

belonging to an image, a bucket is computed for each table by independent hash functions

using Local Sensitive Hashing [14]. The similarity of two images is measured by the

similarity of their features. To find similar features to a query feature we must gather

the features that are mapped in the same bucket it has been assigned in each hash table.

Then, verification steps are performed to discard false positives.

Ke et al. presented the work in [15], becoming a very influencing one. They hash unary

concatenated PCA-SIFT features into multiple hash tables and a voting strategy for sim-

ilarity, using an extra geometric verification (RANSAC) at the end. Big issues of this

implementation are the disk access bottleneck, the redundancy and high storage require-

ments of the data (each feature representation being larger than 8.000 bits) and again

the extra verification stage. Works inspired by it tried to overcome these problems as

the work by Yang et al., that used Local Difference Pattern descriptors (36 values) and

applied a soft-quantization on them to reduce the dimensionality of their binary feature

representations to 72 bits . After hashing, only a hash table is needed and then RANSAC
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verification is applied. [13] used also an LSH approach computing colour histograms using

36 hash tables and 536 bytes per image.

2.2.3 Other approaches

Different approaches to the ones presented here are available, as the work in [16], that

combines spatial information and the bag of words design. It computes SURF histograms

at different pyramids levels using different unique vocabularies for each level instead of a

big single dictionary.

2.3 Recent approaches

All the works analysed so far have very high precision and recalls and responses within

2 or 3 seconds but they present several problems: the size of the dictionary in the bag

of words becomes a very sensitive parameter (small dictionaries increase the number of

false positives while big collections of words decrease the precision). Moreover, there

is uncertainty when choosing which images conform the dictionary and the visual word

quantization proves to be too discriminating for large-scale [17] environments. Hashing

approaches usually need a high amount of tables that leads to higher computational time

and waste of storage resources and only lead to a reduction of the similarity scanning

problem to a portion of the original search space. In both cases, the final geometrical

verification stage becomes a big computational burden. RANSAC is usually used for this

final step: a subset of points is used to estimate the transformation between the query

image and the candidate one and finally the transformation is evaluated using the rest of

the points. However, work on reducing false positives cannot be skipped: even a 1% can

be huge in large data sets (i.e 1% of 50 million are still 500, 000 false positive images).

Regarding scalability, most of these works have not been tested by the authors in big-scale

environments while some of them are just impractical in big environments of few million

image.

Large-scale ready methodologies can be found on both sides to overcome these challenges.

We select two of these works: [18] and [17]. The first extends the bag-of-words approach

by using Vector of Locally Aggregated Descriptors (VLAD) and Product Quantization,

showing the intractability of traditional bag-of-words approaches.

[17] uses hashing for building feature sketches assuming that a single feature match is

enough to state that an image is a replica by ensuring that the features computed have a

high quality. These sketches are binary representations of the features and their similarity
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Paper Features Indexing Distance Verification Performance Year Comments

[15] PCA-SIFT de-

scriptors, 36

bytes

LSH of

unary

SIFT, 20

tables

Thresholding L2 distance,

RANSAC

Recall: 90 −
99.85%, Preci-

sion: 90 − 100%

2004 -

[4] Local Descrip-

tive Pattern

features, 36

bytes

LSH of

72 bits

quantized

features,

1 hash

table

None L2 distance,

RANSAC

Recall: 98.9%,

Precision:

99.9%

2004 -

[12] Visual words

from 1 million

bundled SIFT

features

Inverted-

file index

Voting us-

ing TF-IDF

RANSAC

on ranked

images and

Hamming

verification

1.9 - 2.5 s per

query. Mean

precision aver-

age: 0.74

2009 -

[13]

(CH-

LSH)

Colour His-

tograms at

different levels,

168 bytes

LSH None Optional

(pruning, ex-

tra memory)

0.98% false neg-

atives

2007 -

[13]

(SF-

mH)

Visual words

from SIFT

vocabulary

Min-hash,

724 bytes

per image

Jaccard

similarity

Thresholding No ground truth

provided

2007 Vocabulary of

216words

[17] SIFT, 128 bytes Indexing

of

sketched

features,

4 hash

tables

Hamming

distance

Query ex-

pansion on

similarity

graph

2.4 ∗ 10−6 false

positives at 0.79

recall

2012 Entropy-

based SIFT

filtering and

log scaling of

features

[16] Surf histograms

computed at dif-

ferent pyramid

levels

Not speci-

fied

Intersection

Kernel

None Precision above

95%

2013 Unique code-

book of size

400 for each

pyramid level.

[18] VLAD vectors Inverted

file index

Intersection

Kernel

Asymmetric

Distance

Computa-

tion

Precision

around 0.70

2014 -

Table 2.1: Comparative between near replica detector techniques

is estimated by their Hamming distance. This distance is only computed on a small set

of candidates identified by the the partitioning strategy in [19] for Hamming distance

approximation.

To ensure that features have a good quality they both use feature filtering to discard low

quality features and also avoiding extra verification steps. Both show good performances

in large scale envinronments. Our implementation is a simplified generalization of the

work from Dong et al. and is explained in full detail in 3.

Many other works have been published related to near replica detection, we just reviewed a

tiny selection. A summary of the characteristics of some of the works analysed is presented

in Table 2.1.
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2.4 Applications related

Here is a list of found implementations similar to ours:

• LibPuzzle [20]. It is a lightweight C library (includes PHP bindings) for finding sim-

ple replicas from images. However, it is only capable of finding slight modifications

and does not provide any indexing structure.

• TinEye [21] is a web search engine to find duplicates of images in the web. They

have a private API for near replica detection of custom user images but it is only

available under commercial license.

• Code from work in [18] is available in [22] and includes functions for feature extrac-

tion, descriptor computation and indexing but it does not conform a fully distributed

framework and neither has any persistent storage capabilities.

No open public API was found for near replica detection meeting our scalability, efficiency

and availability criteria.



Chapter 3

Workflow

As commented in the previous section, our implementation has been mainly inspired in

the work by Dong et al. by simplifying and providing a generalization in a distributed way.

Two main use cases have been defined:

• Indexing of images: Input images are processed and stored into our system and will

be used to be queried against to find similar images.

• Querying images: images are matched against the ones already stored and the system

retrieves the weighted results.

Figure 3.1: Overview of the two main use cases

3.0.1 Indexing of images

3.0.1.1 Overview

Once an image to index is received in our system, we follow these steps (Figure 3.1):

1. The points of interest of the image are computed.

14
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2. Descriptor vectors are extracted around each detected point.

3. These vectors (features) are filtered to retain only the high quality ones. Log scaling

can be applied to them to slightly modify their distribution.

4. Features are sketched into binary representations.

5. Sketched are stored by key in an indexing structure compound by several tables.

All these stages are described in the following subsections.

3.0.1.2 Detecting keypoints

Images are formed by a lot of information. Basically, we think of an image as a set of

ordered pixels that themselves contain their color information. But we could also think

that an image is identified by other structures such as sets of gradients, colour histograms,

etc. Any of these characteristics that can be extracted from an image are called features.

Features can be local and global. [1] defines a local feature as ”an image pattern which

differs from its immediate neighbourhood”. On the other hand, global features extract

measures from the whole set of pixels in the image area. We decide to use local features

because they are semantically easier to interpret and have proved to be more useful in

related computer vision fields such as object recognition [1].

In general terms, Tuytelaars and Mikolajczyk shows which ideal properties features should

have:

• Repeatability: Given two similar images, a high ratio of similar features should be

detect on both of them.

• Distinctiveness: Patterns detected by the features should vary enough from one to

another in order to be dinstinguished from the rest.

• Locality: Features should be local (as to reduce probability of occlusion).

• Quantity: Number of features detected on an image should be large enough and

adaptable using thresholding since its number highly rely on the specific application.

• Accuracy: Features must be localized with high precision.

• Efficiency: Features must be feasible to compute.
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Keypoint detector Rotation invariance Scale invariance Affine invariance

SIFT
√ √

×
SURF

√ √
×

ORB
√

× ×
MSER

√ √ √

BRISK
√ √

×
HARRIS

√
× ×

Table 3.1: Invariance comparative between the selected keypoint detectors

All these properties should be maximized but in many cases maximizing one of them

implies decreasing one of the other properties (e.g. the higher the quantity of features we

have the more difficult to be distinguished). We should empower the properties that are

most important in each specific application. Most of use cases require a high repeatability,

that can be achieved by robustness (i.e. detectors less sensitive to slight changes) or

invariance (i.e. detectors not affected by transformations). Here, distinctiveness and

efficiency are also key aspects: we need features to truly represent the image they belong

to, without much ambiguity, and we need to compute these features in a reduced amount

of time.

Usually local features are based on intensity, color and texture measurements. They

can represent many different things, such as points of interest, regions(blobs) or edges.

Figure 3.2 shows the keypoints detected for an image.

Figure 3.2: Example of interest points detected on an image, Source [1]

There are several feature detectors available. We select a subset from the ones imple-

mented in OpenCV 2.4.9: Scale-Invariant Feature Transforms (SIFT), Speeded Up Feast-

ures (SURF), Oriented Fast and Rotated Brief (ORB), Maximally Stable Extremal Re-

gions (MSER), BRISK (Binary Robust Invariant Scalable Keypoints) and Harris Corner

Detector (HARRIS). They have several levels of efficiency, repeatability, etc. Table 3.1

shows a summary of the invariance of the selected keypoint detectors and in the following

paragraphs we give an overview of how they work.
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SIFT keypoint detection SIFT is a rotation and scale invariant region detector that

is widely used. For scale invariance the image must be scale filtered: a pyramid is built so

for each octave of the scale space, the initial image is repeatedly convolved with Gaussians

to produce a set of scale space images with different sizes. Then, adjacent Gaussian images

are subtracted to produce difference-of-Gaussian images. After each octave, the Gaussian

image is down-sampled by a factor of 2, and the process repeated. Keypoints are searched

using local maxima across space and adjacent scales. After keypoints are detected, low-

intensity contrast points and keypoints representing edges are discarded. Then orientation

is computed on the remaining points to achieve orientation invariance using a histogram

with 36 bins (for 360 degrees) with the neighbouring information.

SURF keypoint detection SURF is a rotation and scale invariant blob detector that

follows similar steps as SIFT but differs in some of their details. Points are detected at

scale-scape building a pyramid using Gaussian smoothing with square-shaped filters and

using the integral version of the image. Instead of using smaller versions of an image in

the scale space the filter mask is up-sized. The determinant of the Hessian matrix, that

approximates the second derivative of the image at a point (i, j), is used as a measure

of local change around the points and maximas are chosen. To localize interest points in

the image and over scales non-maximum suppression (suppresses information that is not

part of a local maxima) is applied. Scale and location of the detected points are finally

interpolated.

ORB keypoint detection ORB was intented to computationally-efficient replace SIFT.

The keypoint detection is an oriented variation of the existing FAST detector. ORB com-

putes FAST points image using an intensity threshold between a pixel and its neighbours

in a circular radius of 9 at different levels of a scale pyramid. Points detected eat each

level are sorted using HARRIS measure (corner response measure) and top N are taken.

Orientation is estimated by intensity centroid : it computes the offset vector to the center

and estimates the orientation from the point to it within a radius r. As commented, it is

invariant to rotation transformations but sensitive to scale changes.

MSER keypoint detection MSER regions are connected areas characterized by uni-

form intensity surrounded by contrasting backgrounds. Regions selected are those whose

shapes remain unchanged after applying different sets of intensity thresholds. It can be

computed by sorting all pixels by the grayscale intensity of their values, forming connected

components. Each component is incrementally added pixels and their areas are monitored.



Real-Time Near Replica Detection Over Massive Streams Of Shared Photos 18

Those areas whose variation to different thresholds is minimal are considered maximal sta-

ble regions. It has proved to be scale and rotation invariant and highly invariant to affine

transformations.

BRISK keypoint detection BRISK is another example of rotation and scale invariant

region detector. It searches the scale-space of an image by building a pyramid with ci

octaves and di intra-octaves, where i = 0, 1, .., n− 1 and typically n = 4. The original

image is c0 and each octave is computed by successive downsamplings. The first intra-

octave is a downsampled version of c0 by 1.5 and the rest of them are computed by

half-sampling the first one. At each intra-octave and octave interest regions are identified

when: there is a local maximum and FAST score s is greater than scales below and above.

Location and orientation are finally interpolated.

HARRIS keypoint detection HARRIS detector is a corner detector that is rotation

invariant but sensitive to scale changes. It works by computing a corner response at each

pixel in the image and considers those that are above a threshold. The corner response is

computed using a matrix built with the sum of products of derivatives at each pixel.

The decision of choosing one keypoint detector is very application dependent. The more

invariant to transformations a detector is, the more computational time it needs. That

means that the more invariant a detector is, the highest its repeatability but the lowest its

efficiency. SIFT and SURF are widely used in computer vision because of its robustness

and invariance to rotation, scaling and some illumination and viewpoint changes (they

are partially affine invariant but cannot be labelled as it). Other faster detector such as

ORB or FAST are more suitable for real-time purposes but they are much more affected

to such image attacks. In order to choose a detector for our implementation we designed

a benchmark to measure both the CPU time required to compute them and the quality

of the keypoints found by each of them.

For this purpose we select 10 images from the UPCReplica dataset [23] and for each of

them we generated 32 copies applying the following transformations with different param-

eters: rotation, cropping, JPEG compression, Gaussian noise addition, average filtering,

gamma correction, channel modification, flipping, text insertion and occlusion. Then, for

each image and transformation we match their SIFT descriptors (note that SIFT key-

point detection and SIFT descriptor extraction are two different concepts) using a Flann

matcher, as described in the tutorial from the OpenCV site [24]. The test computes the

transformation between an image and its modification and then measures the distance

between the transformation model and the real transformation between the images. This

test is called homograpy. We use this distance as an estimator of the repeatability of the
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Figure 3.3: Average CPU time comparison of feature detectors on 309 images

keypoint detected. Low distances identify what we call high quality keypoints and large

distances belong to normal/regular keypoints. All images areconverted into grayscale and

resized, preserving their ratio, so their largest side is at most 350 pixels.

Figure 3.4: Features computed per detector on 320 pictures

Figure 3.3 confirms that the more powerful techniques (i.e. SIFT, SURF and MSER) are

also the ones that need more computing time (around a third of a second) while the rest

take only a few miliseconds. Figure 3.4 shows that all detectors compute enough keypoints

for our needs: we will not be interested in extracting more than 250 features per image.

ORB proves to be the worst detector and barely computes high quality features. SIFT

also did not perform as expected and gets fewer high quality features ratio than the rest.
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Figure 3.5: High quality features computed per each image modification type

Considering the significant features detected for each modification type (Figure 3.5), we

see that we get very balanced results: some perform well in specific transformation and

poor in others. Occlusion and text addition modifications get no significant keypoints from

none of the detectors tested. We conclude using BRISK because it is the fastest detector

(can be computed in 20 ms on average) and gets reasonable results, similar to MSER or

SURF.

Keypoints detected are dependent on the image size. To avoid detecting huge amounts

of points per image we resize each image before starting the process so its largest side is

350 pixels. Then, we compute the intensity image to map the three color channels into a

single grayscale channel.

3.0.1.3 Descriptor extraction

Once we have all interest points detected we must extract some information from the

neighbouring area to build local features. The numeric vectors representing the local in-

formation around a keypoint are called descriptors. In our implementation, these values

are natural numbers. Once again, OpenCV gives us implementations of different tech-

niques of descriptor computation. From all of them, we select Binary Robust Independent

Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Ori-

ented Fast and Rotated Brief (ORB), Scale-Invariant Feature Transform (SIFT) and Fast

Retina Keypoint (FREAK). 3.6 shows SIFT descriptors examples.

Each of them have different characteristics, procedures and invariance levels. Deep analysis

about these descriptors can be found in the bibliography and it is out of our work’s scope.
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Figure 3.6: SIFT features on an image

Table 3.2 shows some basic characteristics of the descriptor extractors accounted and we

can find a glance of how they are computed in the following paragraphs.

Descriptor extractor Feature vector length Minimum value Maximum value

SIFT 128 0 255

ORB 32 0 255

BRIEF 32 0 255

BRISK 64 0 255

FREAK 64 0 255

Table 3.2: Number of values per feature and range

Most of the examples in the related work use SIFT techniques (Scale-Invariant Feature

Transforms) such as [17] or [13], or SIFT-based detectors as the work by Wu et al., that

group SIFT features to build broader and richer features.

SIFT descriptors SIFT computes descriptor by building a 16x16 grid around the key-

point. The grid is then grouped into sub-blocks of size 4x4. For each sub-block, it creates

an orientation histogram of 8 bins, resulting in 128 bin values represented as a vector.

BRIEF descriptors BRIEF defines binary tests around a set of image locations in a

smoothed version of an intensity image. BRIEF descriptor is the concatenation of these

binary tests. It is not invariant to rotation.

ORB descriptors ORB descriptor is a rotated version of BRIEF. It steers the points

according to the keypoints orientation using a matrix product between the points matrix

and a rotation matrix. Due to a loss of variance from the original BRIEF descriptor, an

extra selection of high variance and less correlated points is made at the end.

FREAK descriptors FREAK is a descriptor extractor inspired by the human vision.

Binary string is computed as the concatenation of the difference of pairs of receptive fields
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(areas detected) around a keypoint. Descriptor is formed by a coarse-to-fine ordering: first

16 bytes correspond to human peripheral vision (surroundings) and remaining 48 include

finer details (center of the keypoint’s area). Orientation is finally computed by selecting

symmetric receptive fields with respect to the center.

BRISK descriptors BRISK defines N locations equally spaced on concentric circles

around each keypoint and are Gaussian-smoothed with a deviation proportional to the

distance to the center to avoid aliasing. Pairs of pixels around the center are classified

between short and long distance and local gradient is computed for each pair in the long

distance set. The feature orientation is computed as the average of sum of those gradients.

The binary descriptor is computed from the rotation of the short distance pair.

We have evaluated the behaviour of all these descriptor extractors on the replica detection

system.

3.0.2 Feature filtering

A feature vector is generated for each keypoint detected. As seen in Figure 3.4, hundreds

of keypoints are computed per image and so feature vectors. This huge amount of features

leads to the introduction of noise in the data base and its consequences: more storage and

time consumption and increase of false positives, because noisy features tend to wrongly

match other features easily. Works such as [15] or [4] need extra verification stages to

discard all those matches using RANSAC algorithm. RANSAC (Random sample consen-

sus) algorithm estimates the model transformation between a subset of the points from

the original image and the matched image and then evaluates the model with the rest of

the points. However, and as we already stated, this verification stage is prohibitive for

real-time.

Dong et al. shows that this step can be skipped if the features computed have a high

quality. After a proper filtering, they defend that a single feature match between two

images is enough to identify them as near replicas. Our goal in this section is to be able to

identify those feature vectors that have high repeatability and distinctiveness, discarding

the rest of them.

For this purpose we define two measures of feature quality: entropy(3.2) and variance(3.1).

Entropy measures the internal richness of the descriptor: the highest the entropy, the more

information it contains. Variance indicates how the points of a vector are spread out from

the mean and one another. Ideal feature vectors have high variance.
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variance(F ) =
1

n− 1

∑
x,y∈F,x!=y

(x− y)2 (3.1)

Definition of variance

entropy(F ) = −
max∑

i=min

pi(F ) log2 pi(F ), pi(F ) =
|{k|fk = i}|
length(F )

, (3.2)

Definition of entropy

In the previous section we estimated the repeatability of keypoints detected by different

detectors. We want to to see if we can use the same test to identify any pattern to

distinguish between high quality features and regular using entropy and variance measures,

trying to identify thresholds between them. Homography test has been performed again

using BRISK as keypoint detector and each of the presented descriptor extractors to

compute the feature vectors. We try to identify any threshold to be able to classify features

detected. We have found that the homography test does not provide useful information

about the repeatability and distinctiveness of the descriptor values depending on entropy

and variance. Figures corresponding to this experiment for each descriptor can be found

in Appendix A.

Figure 3.7: Distribution of SIFT descriptors depending on their entropy and variance
for 320 images

The results show that both high quality and regular features have similar distributions:

we can only appreciate some slight differences in SIFT variance (Figure 3.7, where high

quality features are slightly shifted to the right) and in BRISK and FREAK (where high

quality features are slightly shifted to the left). Thus, we cannot approximate the quality

of a feature using those measures and there is probably no way to discard noisy features

without discarding high quality ones. However, discarding some good features does not

have to be dramatic for our detection rate: we only need a subset from the features to
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match. In our experiments we will evaluate the impact of feature filtering on the system’s

performance.

3.0.2.1 Log scaling

We assume that all possible values from a descriptor have the same probability of being

computed, that feature vectors are uniformly distributed. Though we know this assump-

tion is naive, we want to ensure that the probability density of these vectors is as uniform

as possible. This is important because, in non-uniform distributed features, the same dif-

ference between two features has a different impact on the similarity estimation depending

on the area of the distribution the difference falls in.

A simple approach to flat distributions is log scaling. For each feature computed in an

image, we follow these steps:

1. Features scaled into range [0,1]

2. Log scale filtering is applied:

logScale(xi) = log10(xi + 1) (3.3)

3. Features are rescaled into their original ranges.

Figure 3.8 show the impact of log scaling on the different descriptor distributions. SIFT

and ORB are biased to the first values and show slight improvements using log scaling.

This technique does not improve any of the other descriptor types. We conclude to use

log scaling filtering for SIFT and ORB feature descriptors.

3.1 Feature sketching

After computing the descriptors, each feature is represented by a d-dimensional vector

where d depends on the type of feature descriptor computed. To compute the similarity

between two features is the same as computing the distance between them. A simple

but effective distance measure is the Euclidean distance. However, it may be expensive

to compute in high dimensional spaces (i.e. SIFT descriptors have length of 128) and

Hamming distance becomes a good approximation of the L2-distance. To be able to

compute it, we need to transform the descriptor vectors into a binary representation that

preserves the original information. By doing this, we also help to reduce the dimensionality

of the vectors.
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Figure 3.8: Distribution of descriptors and their log scaled values

Traditionally, similarity search with high dimensionality has been solved using mechanisms

such as tree based structures or LSH. The first ended up becoming near brute force scans

and the latter just restricted the whole search space to a portion of it using multiple tables

and needing extra expensive computational stages. Sketch construction has proved to be

a good way to approximate distance for near replica detection [17]. We decide to build

sketches using the sketch construction technique presented in [2]. Sketching for similarity

search differs from distance estimation in the way they measure the distance between

vectors: sketching does not need to know the exact distance but the distance relationship

(whether the distance is large or small). Instead of providing a uniform accuracy across all

distances it shows a higher accuracy when distances are smaller (Figure 3.9). It is done by
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using a stripping technique that splits the space into gray and white stripes, where each

color represents the binary sketch value: 0 for gray and 1 for white. Figure 3.9 shows an

example of it in R2. Points that are closer fall in the same stripe and get mapped into the

same values.

Figure 3.9: Stripes space partition for sketching in R2 (left) and relation between sketch
similarity and L2-distance (right). Source: [2]

The function to construct the binary sketch is:

hi =

⌊
Ai · pi + b

W

⌋
mod 2 (3.4)

A is a random vector of length d where each component is independently generated from

a Gaussian distribution [0,1], pi is the i − th element of the input feature vector, B i

a real random variable uniformly drawn from the uniform distribution [0,W ) and W is

the hashing sensitivity parameter. More precisely, W defines the width of the stripe

partitioning: bigger width could make easier that similar points fall in the same stripe but

also could lead to false positives to fall in.

This function may sound familiar because it is also used in LSH approaches (excluding the

module operation). However, there is a big difference between the hashing techniques and

the sketching one. Hashing techniques usually need a lot of tables (e.g. [15] needed around

20) and require extra geometrical verification steps. Instead of mapping each feature into

buckets in multiple tables we map each value form the feature vector into a new space

using a single hash function. In this new space, and as we will see in the following sections,

we will look for the nearest neighbours of the query features retrieving only a small subset

and being able to filter out false positives by setting a threshold on the Hamming distance

with the candidate sketches (low level operation). The Hamming distance between two

sketches is computed as the cardinality between their XOR bit operation (the number of

ones in their XOR).
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3.1.0.2 Sketch indexing

Computing the Hamming distance of a feature against all others is still very expensive.

All the sketches must be cleverly indexed in order to compute this distance only on a small

subgroup of candidates and be able to response within few seconds. Dong et al. uses a

simplified version of the work in [19] based on document retrieval contexts to index the

image sketches. They split the binary sketch into equally sized blocks and build a hash

table using each block as a key. In that work, matching features differ at most 3 bits, that

means that at least one block out of the four is identical. A feature is a candidate for a

query feature if it matches at least one of its blocks. By searching all hash tables, we make

sure that we find all possible candidates. Then Hamming verification is proceeded with all

candidates to get the resulting feature matches. This process is detailed in Section 3.1.1.2.

Our approach is the generalization of this process for m tables and Hamming distance

between matched features of at most h, so candidate match feature must have at least

h−m matching hash tables (blocks). This design is inspired by the traditional inverted-

file structures in text retrieval.

After a feature f of length d is converted into a d-length binary sketch, it is divided into

m blocks (tables) of the same size. Each block is represented using an integer so each one

have at most 32 bits. To take advantage of this candidate approximation for Hamming

distance we also need to set another requirement: number of tables has to be strictly

bigger than the Hamming distance. Only in that case, a match from the key of a block

would approximate the Hamming distance.

A summary of the whole process can be found in Figure 3.10.

Figure 3.10: Summary of the indexing process for 4 hash tables

3.1.0.3 Limiting the scope of indexing parameters

In the image indexing process there are 4 important parameters: the number of hash

tables, the Hamming threshold, the feature length and the sketching sensitivity W . The
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feature vector length depends on the descriptor type, the Hamming threshold is limited

by the number of tables used and W will be adjusted in following experiments. Higher

number of tables leads to a wider range of hamming thresholds. However, it also increases

the probability of collision between features and may lead to bottlenecks.

Considering d as the feature length and so the feature sketch, there are 2d possible values

for a feature sketch, that we also call fingerprint. Assuming these values are distributed

uniformly, each block feature have the same probability of falling into each of the row keys

of a hash table. Having d total bits and m number of tables, we have b = d/m bits per

block. Each hash table has at least 2b possible values, where each value may contain many

different image features related to it. If we index n features and assuming that there are r

average features computed per image, we have to index t = n · r fingerprints. On average,

each possible value in a hash table (out of the 2b possible ones) will be linked with, at

least, s = t/2b sketched features. This also means that each query to a hash table would

retrieve s candidates.

The more candidates retrieved, the more candidates that need to be processed, increasing

the computing time. Our design should try to avoid high number of collisions between

query features and indexed ones. These s collisions depend on both the feature length d

and the number of tables m.

Assuming a large scale environment where we need to index n = 50 · 106 images each

of them generating r = 250 features, we will compute at most (without feature filtering)

t = 50 · 106 · 250 = 12.5 · 109 features to index. We decide to limit the size of the blocks

to 32 bits (4 bytes), though all bits do not need to be used if b < 32. It is a requirement

that feature blocks must have the same length.

Using b = 32 bits and t indexed features, each queried feature would retrieve at most

s = 12.5 · 109/232 = 2.91 candidate features per table. Using b = 16 bits out of the 32

bits of the block, would retrieve s = 12.5 · 109/216 = 190, 734.86 features per table. This

amount is already difficult to handle and may be prohibitive in larger environments. We

fix the minimum number of bits to be used in a block to 16.

Using this limitation and considering that a candidate must match have at least m − h

tables to the query feature, we have the following set of configurations for each descriptor

types:

• SIFT descriptors: They are 128-length vectors so sketches have d = 128 bits. We

can use up to 8 hash tables and a hamming threshold up to 7.

• BRISK and FREAK descriptors: All these features have a length of d = 64, being

able to use up to 4 tables and hamming thresholds from 1 to 3.



Real-Time Near Replica Detection Over Massive Streams Of Shared Photos 29

• BRIEF and ORB descriptors: Their length is d = 32 and can only be split into two

tables, using a hamming threshold of 1.

3.1.0.4 Structures

In order to be able to persist the information related to the feature blocks and the feature

and the image metadata an indexing structure must be designed. We define 3 tables:

• Hash table: Contain the hashing information of the sketched features. The ith hash

table is related to the ith block of the binary representation of a feature stored. Each

row is formed by:

– Hash: ith block of the original feature that is used as a key.

– Feature identifier: link to the feature table.

• Feature table: Contains basic information related to a feature. That is:

– Feature identifier: Unique identifier of the feature in the system, used as key.

– Hamming blocks: Columns belonging to each of the blocks that compound the

binary feature sketch.

– Image id: Identifier of the image the feature belongs to.

• Image table: Contains the meta data information of the images stored:

– Image identifier: Unique identifier of the image.

– Path: URL or local path where to find the image.

– Resource id: If the image comes from any specific platform (e.g. Twitter,

Instagram), this field contains the identifier of the external resource containing

the image.

– Image provider: Provider of the image (e.g. Disk or Twitter).

In tables Table 3.3, Table 3.4 and Table 3.5 we can see the schemas for all tables.

Block key Feature identifier

key1 feature identifier1

[...] [...]

keyn feature identifiern

Table 3.3: Schema of one of the hash tables in the system
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Feature identifier Hamming block 1 [...] Hamming block M Image identifier

feature id1 hamming code11 [...] hamming code1m image id1

[...] [...] [...] [...] [...]

feature idt hamming codet1 [...] hamming codetm image idt

Table 3.4: Schema of the feature table

Image identifier Image path Image resource Provider

image id1 image path1 image src1 image provider1

[...] [...] [...] [...]

image idr image pathr image srcr image providerr

Table 3.5: Schema of the image table

3.1.1 Query by image context

3.1.1.1 Overview

In this use case the goal is to find all those images in the data base that are similar to a

query one. The steps required for this process are summarised in Figure 3.1, and are:

1. The points of interest of the image are computed.

2. Descriptor vectors are extracted around each detected point.

3. These vectors (features) are filtered to retain only the high quality ones and log

scaled is performed if needed.

4. Features are sketched into binary representations.

5. Sketches are queried against the stored features and similar ones are retrieved.

6. Similar features are filtered using the hamming distance and a list of matched images

is built.

7. Image matches are weighted by the number of features that matched for the specific

image and can be filtered using a weight threshold.

Steps 1 to 4 are the same as the ones for the indexing use case, explained in Section 3.0.1.

The rest of steps are detailed in the following sections.
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3.1.1.2 Querying sketches

Each block a sketched feature is partitioned into produces a query to the correspond-

ing hash table, retrieving a list of candidates. Those candidates from the database that

matched at least m− h tables (blocks) from the feature are preserved. This algorithm is

shown in 1.

Once all candidate are gathered, the Hamming distance between each of them and the

query feature must be computed. Matches above a threshold h are discarded and the ones

remaining become the list of matches between the database and the query image. All

images that matched at least one feature from the query are considered near replicas of it.

Algorithm 1: Feature candidates query algorithm

input : A feature sketch f , the number of tables m and Hamming threshold h

output: Feature candidates for the input feature sketch

matches ← ∅
result ← ∅
for i← 1 to m do

blockKey ← block i from feature sketch f

candidatesBlock ← list of matched blocks for blockKey in hash table i

for c ∈ candidatesBlock do
candidateFeature ← feature identifier from feature c

if candidateFeature not present in matches then
set candidateFeature value in matches to 1

else
increase candidateFeature value in matches

if candidateFeature value in matches greater than (m− h) then
add candidate c to result

return result;

3.1.1.3 Gathering results

Matches are finally grouped by the image they belong to and a voting strategy is performed

by assigning a weight to each match: the weight of a matched image is the number of

feature matches with the query. We can perform an extra step by filtering results by its

weight in case false positives are still high.



Chapter 4

Implementation

The previous section described the theoretical framework of our system. In this section we

focus on how to implement it using modern and open source tools. We decide to implement

two versions of our system: a persistent disk based implementation and a memory intensive

implementation.

4.1 Architecture overview

The technologies stack used can be seen in Figure 4.1. The input channel is generalized to

both file systems (local or distributed) and also streaming endpoints as Twitter Streaming

API. In order to be ready to support large-scale environments we use Apache Spark, a

computational distributed framework that is presented in Section 4.3. Sketching informa-

tion and image metadata is stored in disk using the distributed database HBase, detailed

in Section 4.4 and in memory using Spark persistence options.

Figure 4.1: Overview of replica detector system stack

32
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4.2 Image processing: OpenCV

Some of the operations required in our workflow rely on very specific image processing pro-

cedures. Several image processing libraries exist for Java, such as ImageJ[25] or Marvin[26]

but they are focused on simple basic low level operations, that do not fit our needs.

A robust library able to cope with all image transformations in the project and able to

efficiently compute the descriptor vectors is in need: OpenCV. OpenCV[27] is a widely

used image processing open source C/C++ library. It can take advantage of multi-core

processing and also have interfaces for GPU hardware acceleration and support for different

programming languages, including Java. It has a spread community of users as well as a

complete documentation. Nonetheless, the documentation available is focused on the C++

version and examples are sometimes difficult to port into Java. We have also encountered

some errors that have been difficult to track because they are caught somewhere in the

native C++ code, printing ambiguous error messages.

We use OpenCV for four purposes: detect feature keypoints in the images, evaluate the

keypoint detectors, compute descriptors around the features and generate replicas from

images. Figure 4.2 shows an example of how to compute the feature vectors of an image

using OpenCV for Java.

4.3 Distributed approach: Apache Spark

Apache Spark is an open-source cluster computing framework. It is the evolution of

Hadoop’s MapReduce approach, expanding the types of primitive data operations avail-

able, and has proved to be x100 times faster on memory and x10 on disk for some specific

appplications [28].

4.3.1 Architecture

Spark applicatons are independent processes that run on a cluster and coordinated by a

SparkContext object. A cluster is formed by worker nodes, that provide a set of executors

that run computations and store data for the submitted applications. A summary of the

architecture of Spark can be found in Figure 4.3.

When an application is submitted into spark, the Spark Context inside the driver program

connects to the cluster. Then, the application is given a set of processes(executors) that

will be used thoughrout all the application lifetime. This means that applications are
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// ComputeDescriptor.java

import org.opencv.features2d.DescriptorExtractor;

import org.opencv.features2d.FeatureDetector;

import org.opencv.highgui.Highgui;

import org.opencv.core.Mat;

import org.opencv.core.MatOfKeyPoint;

public class ComputeDescriptor extends JApplet {

public static void main(String[] args) {

String path = args[0];

// Read image

Mat img = Highgui.imread(path, Highgui.CV_LOAD_IMAGE_COLOR);

// Compute keypoints

MatOfKeyPoint points = new MatOfKeyPoint();

FeatureDetector detector = FeatureDetector.create(FeatureDetector.BRISK);

detector.detect(img, points);

// Compute descriptor

DescriptorExtractor ext =

DescriptorExtractor.create(DescriptorExtractor.SIFT);

Mat descriptor = new Mat();

ext.compute(img, points, descriptor);

}

}

Figure 4.2: Example of how to compute SIFT descriptor vector around BRISK keypoints

isolated from each other and that they do not share any computational resource or data.

Once executors are acquired, the application code (i.e. JAR or Python files) is sent to the

executors and the Spark Context sends tasks (units of work) to them.

Each application is formed by Spark jobs (e.g. map, filter), that are divided into stages.

It is recommended that the machine launching the application lies close to the cluster

worked nodes.

Figure 4.3: Spark cluster overview from the Spark documentation
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Spark can be deployed in three differenet cluster managers:

• Mesos: general cluster manager supporting Hadoop MapReduce and service appli-

cations.

• Yarn: resource manager in Hadoop2.

• Standalone: cluster manager embedded in Spark. It only requires to place the same

version of Spark in each of the working nodes.

For the ease of the development we decide to use the standalone cluster included in the

Spark distribution.

4.3.2 Resource allocation and scheduling

By default, the allocation of resources is done by static partitioning. This means that each

application is given the maximum set of resources it can use and they remain held by it

until it finishes. In standalone mode, FIFO (First In First Out) is the default policy for

CPU allocation: applications take the maximum nodes from the available ones though

maximum number of nodes and maximum amount of memory used by an application

can be limited by the properties spark.cores.max and spark.executor.memory respectively.

Jobs within an application are also scheduled in a FIFO fashion: a job only gets priority

until all stages from the previous one have finished.

Dynamic allocation of resource across applications is only available on Yarn so far. For

multi user servers it is also possible to enable fair scheduling using a Round Robin policy.

It can be done by setting the spark.scheduler.mode property to FAIR when configuring a

SparkContext. Pools with different priority and scheduling policies can also be configured.

We will stick to the FIFO fashion because our server is a private dedicated machine.

4.3.3 Spark stack

On the top of Spark, some domain specific applications (Figure 4.4) have been developed to

take advantage of the Spark potential: ML lib, GraphX, SparkSQL and Spark Streaming.

From all the Spark applications we only used Spark Streaming, that is detailed in Sec-

tion 4.3.5.3.



Real-Time Near Replica Detection Over Massive Streams Of Shared Photos 36

Figure 4.4: Spark application stack

4.3.4 Data

Spark uses resilient distributed dataset (RDD) to manipulate data. They are fault-tolerant

immutable distributed collection of objects that can be operated in parallel. RDDs are

split into multiple partitions on different nodes across the cluster. When performing

operations on the data, Spark will independently work on each partition using different

tasks per CPU. Partitions are automatically set based on the cluster but they can also

be set manually when a RDD is created. It is recommended to use between 2 and 4

partitions per CPU in the cluster. Partitioners are the objects that split the data among

different nodes. They can be explicitly set (RangePartitioner and HashPartitioner are

built-in partitioner) or custom partitioners can be implemented. In our experiments we

will use the default partitioning from Spark.

RDDs can contain basic types in Python, Java and Scala but also user defined objects.

PairRDD also exists and are formed by a key and a value.

4.3.4.1 Creating RDD

RDDs can be created by loading data from external sources (e.g. text files or databases)

or by distributing a collection of objects (e.g. list) in the driver program.

Figure 4.5 shows different ways of loading data into an RDD. The first example shows

how to distribute and load a collection of integers and the second one does the same with

a set of strings, specifying the number of partitions to be used. The third example shows

how to load lines from a document into an RDD. The last example parallellizes data read

from a HBase table. More details on HBase are explained in Section 4.4.

4.3.4.2 Operations on RDD

RDD operations can be divided into transformations and actions. Transformations are

operations that return another RDD while actions return a result to the driver program

or write a result into an output. All operations (jobs) in an RDD work in the same way:

they apply a function to each element in the RDD to generate a result or output. Being
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// LoadData.java

// sc - Spark context

// Parallelize collection of data

List<Integer> dataInt = Arrays.asList(1, 2, 3, 4, 5);

JavaRDD<Integer> distData = sc.parallelize(dataInt);

// Parallelize collection of data using 2 partitions

List<String> dataStr = Arrays.asList("this", "is", "an", "example");

JavaRDD<String> distData = sc.parallelize(dataStr, 2);

// Read data from text file

JavaRDD<String> lines = sc.textFile(path);

// Read data from HBase

Configuration conf = HBaseConfiguration.create();

conf.set(TableInputFormat.INPUT_TABLE, table);

conf.set(TableInputFormat.SCAN_ROW_START, start);

conf.set(TableInputFormat.SCAN_ROW_STOP, end);

JavaPairRDD<ImmutableBytesWritable, Result> content = sc.newAPIHadoopRDD(

conf,

TableInputFormat.class,

ImmutableBytesWritable.class,

Result.class));

}

}

Figure 4.5: Example of how to load data into RDDs

an RDD distributed among different nodes, each job is computed by as worker nodes as

partitions a collection is divided into.

The transformations we used the most in our work were:

• groupByKey : used in PairRDDs, gathers together all values for each different key.

• reduceByKey : used in PairRDDs, combines values with the same key using a custom

function.

• map: maps each object in the RDD into another object.

• mapToPair : map each object in the RDD into a PairRDD.

• mapPartition: map each object in the RDD into a object, using a user defined task

for each partition the data is split into. This is useful when an external connection

needs to be open for a job but we do not want to open one for each object in the

RDD. Instead, it opens one connection for each partition.
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• flatMap: maps each object in the RDD into multiple new objects.

• flatMapToPair : maps each object in the input RDD into multiple new pair objects.

• filter : erases from the RDD the objects that do not satisfy a user criteria.

These transformations are executed lazily : when they are called, they are not immediately

computed. Instead, sparks records the meta-data indicating that the operation has been

requested. All transformation requested on a RDD are stored in the lineage graph, that

is a directed acyclic graph (DAG). Therefore, RDDs are conceived not as a set containing

data but as a result of several transformations. Some of these transformations, such a

reduceByKey or groupByKey, need partitions to be recomputed and can force the worker

nodes to exchange data across partitions (e.g. distribution of keys after mapping pairs

into new keys may need to gather values that were originally far from each other). This

is called shuffling and must be avoided because it may force Spark to write data on disk

(independently whether it is computed on disk or memory) and generate bottlenecks.

When several design options are available we must choose the ones that best preserves the

partitioning.

The list of the most common action operations we used in this work are:

• foreach: applies a function for each element of the RDD. It has no output and does

not modify the collection of objects.

• foreachPartition: applies a function for each element of the RDD, using a user defined

task for each partition the data is split into.

Once a action is called, the transformations contained in its lineage graph are computed

in the order they were requested and then the action requested is performed. If we want

transformations to be computed, we need to call at least one action.

Examples of how to use some of these operations can be found in Figure 4.6. The example

uses arbitrary input data and maps each integer in the collection into a new one. Then,

filters out all values in the resulting collection using a threshold. In the end, it counts

the results by calling the action count. Once the action is requested, Spark computes the

lineage graph in Figure 4.7 and executes it from top to bottom.

4.3.4.3 Persistence

Every time we need to perform an action on a RDD, Spark computes all of its dependencies

in the lineage graph. When two actions are performed in a row, RDDs need to be computed
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// LoadData.java

// threshold - Threshold of the application

// values - JavaRDD<Integer> containing a set of values

// Operation 1

JavaRDD<Integer> newValues = values.map(new Function<Integer, Integer>() {

public Integer call(Integer v) throws Exception {

Integer result = v * new Random().nextInt();

return result;

}

});

// Operation 2

JavaRDD<Integer> filtered = newValues.filter(new Function<Integer,

Boolean>(){

public Boolean call(Integer v) throws Exception {

return v > threshold;

}

});

// Operation 3

int count = filtered.count();

}

}

Figure 4.6: Examples of operations on RDDs using Java 7

Figure 4.7: Lineage graph from the example

twice, being computationally expensive. To solve this we can ask Spark to persist the data

into memory using the cache and the persist operators, so each node stores their partitions

on memory.

// Persistence.java

// values - rdd containing data

values.cache();

values.count();

values.count();

Figure 4.8: Code showing how to cache data into memory
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Figure 4.8 shows an example of data caching. Let’s assume that several transformations

haven been applied on data represented by the RDD values. When cache() is called Spark

is notified to persist the content of the RDD into memory. When the first count() (action)

is performed it computes the dependencies of the RDD and caches the computed elements

into memory. The second count() can compute that value from the cached data instead of

recomputing them all. We can also use the more general persist operator, that needs the

level of persistence of the data to cache as input. There are different levels of persistence

that satisfy different space and CPU requirements. The complete list can be found in

Figure 4.9. Cache is a specific case of persist where the RDD is stored into memory. By

default, Java will persist data as unserialized objects in the JVM heap.

Figure 4.9: Spark persistence levels

If the cached data does not fit in memory, Spark releases old partitions using Least Recently

Used (LRU) policy. Depending on the persistence selected, the system will recompute these

partitions or write them to disk. Note that caching unnecessary data can also be negative

for the performance of the application.

To release the data from the cache we can call the unpersist operator.

4.3.5 Batch use cases

In this section we describe the two use cases implemented for batch indexing and querying

of images, one for each mode of persistence considered.
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4.3.5.1 Batch indexing

This use case processes a bulk of images, extracts their features, computes the sketches

and indexes them in a distributed way. First, images are loaded into RDDs and then a set

of Spark actions are performed following the schema in Figure 4.10. Each vertical stage

in the flow diagram represents a level of parallelism while the horizontal stages represent

the different jobs to compute. Let’s detail them:

1. Job 1. Image loading. Images are loaded from an external resource (e.g. dataset,

local file system or HDFS).

2. Job 2. Descriptor extraction. Each image is loaded, resized and converted into

grayscale. Then, keypoints in the image are detected and feature vectors are com-

puted. Each feature vector is mapped as an object into a new RDD.

3. Job 3. Feature filtering. Feature vectors in the RDD are filtered out using entropy

or variance so only a fraction of them remain.

4. Job 4. Feature scaling. Optionally, a log scaling process can be applied on the

feature vectors in the RDD.

5. Job 5. Feature sketching. Each feature vector of length d is mapped into a d-

dimensional binary sketch.

6. Job 6. Image indexing. Each pair of image metadata and related feature vectors is

stored. This stage is different on the memory based and on the disk based approach:

• Disk (HBase). Contains two steps:

(a) Image grouping: Feature belonging to the same image are grouped.

(b) HBase connection: Instead of opening a connection to the database for

each element in the RDD, we use a foreachPartition action that allows

to schedule specific tasks for each of the partitions the data is split into.

Using this solution we avoid the overhead of creating too many connections

to the database, that may lead to bottlenecks and slow performances. The

number of partitions is an important parameter here though we used the

default partitioning. Each partition opens a connection to HBase and stores

sketched images it contains.

• Memory. It is compound by several jobs:

(a) Block mapping: Creates an array with m positions where m are the number

of tables in the system. For each table i in the system it maps the input

features to the i− th block of their sketches and assigns them to the i− th

position in the array.
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(b) Image extraction: Image metadata is extracted from the whole set of

sketched features.

(c) Image unique: Repeated image identifiers are erased.

(d) Identifier extraction: Image identifier is extracted from the image metadata.

(e) Feature indexing: For each position i from the sketched blocks array we

append them to the respective RDD of blocks already indexed.

(f) Image indexing: Image metadata computed is appended to the RDD of

indexed images. At the end of the process we request that data must be

persisted and we perform an action (e.g. count()) on each RDD to ensure

that they are computed and cached on memory. Data is only stored on disk

if it does not fit on memory. It is important, before using memory based

use cases, that we must ensure beforehand that data is going to fit into the

cluster’s memory. Otherwise, data will be split between memory and disk

and it may slow down the performance by orders of magnitude.

Figure 4.10: Spark implementation overview of the batch indexing use case

Lineage graphs in Section B.1 show the lineage graphs for both implementations. It is

remarkable that the memory intensive scenario needs to schedule more Spark jobs and

some of them are likely to produce data shuffling (as union), possibly leading to slower

performances.
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4.3.5.2 Batch querying

The process of querying for replicas into the database shares the first steps with the

indexing use case. Once the sketches are computed, candidates are searched for and they

are finally filtered to build weighted reliable results (Figure 4.11). The jobs required in

this use case are described as:

1. Job 1. Descriptor extraction. Image/s are loaded into Spark in the same way as in

the indexing scenario.

2. Job 2. Feature filtering. Same as indexing.

3. Job 3. Feature scaling. Same as indexing.

4. Job 4. Feature sketching. Same as indexing.

5. Job 5. Query for candidates. This step must search for feature candidates for the

queried features. This, again, depends on the specific implementation:

• Disk (HBase). Similar to what we did in the indexing case, a connection

is opened for each partition where the sketches are distributed into and the

database is queried retrieving all candidates for each feature sketch.

• Memory. In the memory implementation we need several jobs:

(a) Mapping: for each table i, a new RDD is computed containing the block

i from their sketches. Then, it is joined with the i − th indexed blocks

data so the result represents the block matches for table i. When all table

matches have been computed, they are gathered using union operations.

(b) Weighting: each block match is given a weight of 1.

(c) Group by match: matches belonging to the same feature are grouped.

(d) Filter by feature match: feature matches that do not match at least the

minimum number of tables are discarded.

(e) Map to match: candidates are mapped into a new RDD.

6. Job 6. Hamming filtering. Each feature match in the candidates RDD is filtered

discarding those whose Hamming distance is above the threshold.

7. Job 7. Image identifier extraction. This job extracts the identifiers of the unique

matches and assigns a weight of 1 to each of them.

8. Job 8. Weight accumulation. The sum of weights for each image matched is per-

formed.
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9. Job 9. Weight filtering. The resulting RDD from the previous job contains pairs

of image matches and the corresponding weight of the match. If weight filtering is

enabled, the matches are filtered and only those with weights above a threshold are

kept.

Figure 4.11: Spark implementation overview of the image query use case for N images
where N = 1

Lineage graphs from both implementations can be found in Section B.2 showing, again,

the overhead introduced by the memory approach that makes it far more complex than

the disk-based one.

4.3.5.3 Streaming

Spark Streaming enables processing of live data streams. The abstraction of continuous

data streams provided by Spark Streaming are called discretized streams or DStreams.

They are represented as sets of RDDs belonging to a certain interval of time or time

window, as seen in Figure 4.12. Transformations on DStreams generate other DStreams

and they are computed by executing operations on each of the RDDs contained.
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Figure 4.12: Input data in Spark Streaming. Source: Apache Spark documentation

Spark streaming can receive input data from multiple sources such as Kafka queues, Ki-

nesis, Flume or Twitter, the endpoint we have used in this work. Each receiver in an

application needs to have an extra executor to receive the data.

The worflow for the streaming use cases is the same for both disk (HBase) and memory

cases: we apply the already described steps on each of the RDDs that conform each

DStream.

The rate of records received per second can be limited by setting the configuration param-

eters ”spark.streaming.receiver.maxRate” to a positive value.

4.4 Persistent data management: HBase

Indexing massive amounts of image information require high storage requirements and a

way to handle data in a scalable and efficient way. Assuming an average of 250 features

are extracted per image and indexing 50 million images, information related to at least

2500 million elements needs to be stored and retrieved easily. In these cases, traditional

relational database management systems are not enough to satisfy the requirements: they

do not scale for such big amounts of data.

The way we need to insert and retrieve data is by using values as a key (feature identifiers

and sketch block keys), as seen in Section 3.1.0.2. We have focused our research on key-

value based database managers with special attention on their scalability. Several options

were found: Redis, Cassandra and HBase. Though Redis is a very fast it is not distributed

and it is suitable to be used with volatile data.

Cassandra and HBase have very similar characteristics: key-value based, NoSQL and

HDFS integration. They are both an implementation of the groundbreaking BigTable

paper from Google [29]. Though Cassandra’s documentation is more complete and the set

up is easier than in HBase, we decide to use the second because we are a little familiar

with it.
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To make sure we have chosen the proper technology, we check that our application fits all

the requirements to be implemented with HBase following the guidelines on their reference

guide [30]:

• In a real context we expect to handle hundreds of millions of data.

• We do not need to use extra features from traditional database management systems

such as transactions or triggers.

• For a proper deployment at least 6 nodes need to be used. This last requirement is

not important for our development because we are using a single machine. However,

it must be considered for further deployment in real clusters and it is a feasible

requirement.

4.4.1 Data

Data in HBase is stored in tables, identified by a table name. Tables have several columns

that are grouped by column families, that can have multiple column qualifiers. Related

qualifiers should be stored in the same column family because they are stored close to each

other. Column names are formed by using the column family as the prefix and a qualifier,

separated by a colon. Column families are defined at the table schema definition while

column qualifiers are defined at runtime, and both amounts are recommended to be kept

low. HBase data can be considered as sparse: not all table entries must have values for all

columns and they do not need to share the same column qualifiers.

A table entry (row) is identified by a unique key, a set of uninterpreted bytes. Rows are

lexicographically sorted in an ascending way, so lower order keys are in first place. HBase

can keep track of the modifications of a column value in time, keeping a configurable limit

of them. Each of these modifications is called a version, and has a timestamp assigned.

The default number of versions stored is 1 and is the suitable for our system: features and

images are constant in time. The union of a row, a column and a version is called cell.

Tables (HTable) are organized in regions and may be split among different ones. Initially

and by default, all tables start in a single region and when they reach a given size, they

are split by the middle. Though data is stored in disk, HBase has several configurable

levels of caching that help avoid seeking into disk for recurrent data requests.

Similar to other data base management systems, common CRUD operations (Creation,

Retrieval, Update and Deletion) are implemented. The basic operations in HBase are:
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• Get: return the column of a specific row. Subset of columns, qualifiers, versions and

timestamps can be provided for a more accurate result.

• Put: adds or updates (if the key exists) the content of the row. It always creates a

new cell with a specific timestamp. If the maximum number of versions is 1 and the

row already exists, it is overwritten.

• Scan: iterates over rows and returns their columns. Different filters can be applied

as in get operations. Scan operations can be done by searching row prefixes or by

intervals of rows, being the latter faster. It is important to be concerned about the

limitations of HBase: it is intended to search through small intervals of rows and

scan operations of whole tables can take a lot of time.

• Delete: deletes a specific version, column family or column from a row in a table.

There is no modification operation in HBase: the need to modify a cell implies deleting

and recreating it.

4.4.2 Architecture in HBase

The architecture model (Figure 4.13) follows a master-slave approach. There are some

important elements in the HBase architecture:

• Master node (HMaster): manages and monitors the working cluster and balances

the load of work.

• Region Server node (HRegionServer): manages the access to its regions and and

holds the communication with the client. A region is every component the storage

space is divided in.

• .ROOT. table: table storing the location of .META. table.

• .META. table: table containing the assignment of the data to each Region Server.

Each Region in a Region Server has a MemStore, an in-memory data store where infor-

mation is saved before being written to disk. MemStore flushes data into disk when it is

full.

There are two types of files: StoreFiles and WALs. WAL (Write-Ahead Log) is a file

shared by all regions in a Region Server that stores new data that has not been persisted.

It is useful in case of server failure because it can recover data contained in the MemStore
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Figure 4.13: Summary of HBase architecture. Source: DZone [3]

that has not been persisted into disk. The implementation of WAL in HBase is called

HLog.

One key aspect to ensure the scalability of HBase is the region splitting. Each region is

automatically configured to hold a range of row keys. By default, when region exceeds a

configurable size, HBase splits the region in two child regions. These splits can be manually

configured by pre splitting the tables or manually, but it is only recommended for advanced

users and only when the user knows the distribution of the row keys beforehand: regions

split poorly may affect the cluster load distribution and decrease its performance. We

decide to rely on the default splitting configuration from HBase.

HBase works on the top of Zookeeper, a cluster manager. Zookeper is up to tasks such

as the master selection, the region lookup or the coordination between nodes. HBase

manages already the Zookeper cluster but it can also point to existing clusters accessible

from all the clients.

4.4.3 Data workflow

Here we describe the workflow when a client tries to write a value:

1. Client contacts Zookeeper cluster to find a specific cell by providing its key and table.

Zookeeper retrieves the server hosting the .ROOT. table. Now client can query the

.META. table. This information is requested once and cached afterwards.
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2. Client can now query the meta table to get the server that holds the key for the

given table.

3. The client caches the information of the server and does not need to query the meta

table again. From now and on, the client directly contacts with the corresponding

HRegionServer.

4. When the HRegionSever receives the connection and opens the region, it creates the

corresponding HRegion object. The HRegion itself creates Store instances, one per

each Colum Family for each table. The Store instance can also have one or several

StoreFiles, that are wrapper around the actual distributed multi-indexed files called

HFiles.

5. Client pushes data into the server, that is first written into the WAL (HLog) file. By

default it is enabled and it is recommended to do it to recover information in case

of server failure. Afterwards, data is written into the MemStore. In case it gets full,

data inside is flushed into the HFiles.

4.4.4 Configurations

HBase has 3 possible working configurations:

• Distributed mode: it works on a real distributed cluster where each node is a HMaster

or a HRegionServer (or both).

• Pseudo-distributed: it works on a single host machine but each needed daemon

(HMaster, HRegionServer and Zookeeper) works on a separate process.

• Local: everything works on a single host and different processes are created in the

same Java Virtual Machine. It is only used for development purposes.

Local mode has been adopted in this work because of the lack of time and hardware

resources and the lack of expertise in cluster management.

HBase is widely configurable and adaptable to user needs. Some of its parameters can be

tuned in the hbase-site.xml inside the configuration folder. We identified some parameters

that could be useful in a real cluster deployment for our specific problem:

• hbase.client.max.total.tasks: Maximum number of concurrent tasks a table instance

will send to the cluster (default 100).
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• hbase.client.max.perserver.tasks: Maximum number of concurrent tasks a single

HTable instance will send to a single region server (default 5).

• hbase.client.max.perregion.tasks: maximum number of concurrent connections the

client will maintain to a single region. If this number is reached, next connections

will have to wait until some writes finish (default 1).

• hbase.client.scanner.caching: Number of rows fetched when calling next on a result

scanner object when not served from memory (default 100).

4.4.5 Data structure

4.4.5.1 Design of a row key

One of the key aspects in the design of a HBase schema is the row key definition, the

unique value that identifies a row in a table. There are some ideas we should take into

account when designing a row key:

• Row keys are unique.

• Row keys should be as short as possible and also be designed to be accessed easily.

Names of column qualifiers and their values must be kept short as well.

• Rows are sorted alphabetically.

• Rows with similar keys are stored in the same region.

These characteristics are important when designing the tables in HBase. Note that au-

toincremented identifiers or timestamp values are not recommended to be used as keys:

successive values would be pushed into the same region and we would not take profit of

the distributed behaviour, easily blocking the Region Server containing the rows. Thus,

row keys must be as random as possible.

The following sections explain the HBase implementation of the data structure design

described in the previous chapter.

4.4.5.2 Hash tables

Each hash table relates to a slice of the Hamming representation of a feature and uses this

block as key. Matching features must have at least one identical block, so there may be

two features with the same block key. Though, row keys must be unique, so our design
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appends a separator (i.e. an underscore) to the integer representation of the block key

followed by the unique image identifier and embeds it into a string, building a unique

identifier that uses the block key as a prefix. This approach sacrifices disk storage (string

representations are variable and longer than numeric ones) by gaining ease of access and

guarantees that there can be multiple features from different images with the same block

identifier.

One column family is defined for this table: column family hf (i.e. hamming family). A

qualifier fq (i.e. feature qualifier) is defined within to represent the reference to the feature

a block belongs to. An example of a hash table can be found in Table 4.1. The table shows

two cells from one out of 4 hash tables, containing two feature blocks with respective keys

1,546 and 84,476 belonging to the same image 1,450.

Row key Column family ’hf’

1546 1450 hf : fq = ”1546 11478 4568 55442 1450”

84476 1450 hf : fq = ”84476 9887 0002 2145 1450”

Table 4.1: Example of a hash table containing two blocks from different features be-
longing to image 1,450

4.4.5.3 Feature table

This table maps each feature with the image they belong to and contains the full feature

sketch. The feature identifier or row row key for a feature is built by appending the

sketch block values separated by an underscore with the image the feature belongs, both

separated again by an underscore. It has one column family called fi (i.e. feature info)

with qualifiers:

• id: links the feature with the image unique identifier.

• hc: long representation of the feature sketch.

Row key Column family ’fi’

1546 11478 4568 55442 1450 fi : fid = ”1450”

1546 11478 4568 55442 1450 fi : hc = ”1546 11478 4568 55442”

84476 9887 0002 2145 1450 fi : fid = ”1450”

84476 9887 0002 2145 1450 fi : hc = ”84476 9887 0002 2145”

Table 4.2: Rows (cells) for two indexed features belonging to the same image 1,450
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4.4.5.4 Image table

This table contains the basic metadata of the image indexed. The image identifier is used

as row key and and it contains one family imf (i.e. image metadata family) with qualifiers:

• pq: Path to the image file or URL.

• rq: The resource identifier the image belongs to (e.g. if it belongs to a Tweet it

contains the tweet identifier).

• prq: Source the image comes from. Some examples: disk, Twitter, Instagram, etc.

Row key Column family ’imf’

1450 imf : pq = ”https : //pbs.twimg.com/media/CCvbbxpW8AAmClP.jpg”

1450 imf : rq = ”588805469394886656”

1450 imf : prq = ”Twitter”

65 imf : pq = ”https : //pbs.twimg.com/media/CCvFBbJWgAEjKyC.jpg”

65 imf : rq = ”588780804651757568”

65 imf : pq = ”Twitter”

Table 4.3: Rows containing information from two images

4.4.5.5 Parameters table

This table stores the settings defined by the user at the initialization. It contains one only

row identified by the key ’1’. Three column families are defined:

• df . Parameters related to the feature vectors extraction. Qualifiers used are:

– kyq. Keypoint extraction technique (values: ’SIFT’, ’SURF’, ’HARRIS’, ’ORB’,

’BRIEF’, ’BRISK’ and ’MSER’).

– dtq. Descriptor computation method (values: ’SIFT’, ’FREAK’, ’ORB’, ’BRIEF’

and ’BRISK’).

– msq. Maximum size of the largest side of the images to be resized before

computing their feature vectors.

• ff . Parameters related to the pre-processing of the feature vectors. Qualifiers used

on this column family are:

– ftq. Type of filtering to apply on features (values: ’NONE’, ’ENTROPY’ and

’VARIANCE’).
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– tq. Threshold of the feature filtering, if any.

– lsq. Whether log-scale should be applied.

• if . Parameters belonging to the hash function used to build the sketches. The

following qualifiers are used:

– aq. A vector from the sketch construction function. Values are separated by

commas.

– bq. Parameter b from the sketch construction function.

– cq. Whether compression should be enabled on the rest of the tables.

– dbeq. Whether block encoding should be used on the column families of the

rest of the tables.

– hdq. Hamming distance threshold to identify matching features.

– ntq. Number of hash tables.

– ttlq. Time-to-live of cells. It is the time (seconds) the images remain alive in

the database. It may be useful for streaming scenarios where we only want to

evaluate the most recent data and when storage is a restriction. It is set to

negative when it is disabled.

– wq. Sketching sesnsitivity parameter W .

Table 4.4 shows an example of a parameters table. In memory-based implementations this

table is replaced by a properties file.

Row key Column family ’df’ Column family ’ff’ Column family ’if’

1 df : keyp = ”BRISK

1 df : dt = ”SIFT”

1 df : msq = ”350”

1 ff : ft = ”V ARIANCE”

1 ff : tq = ”900”

1 ff : lsq = ”true”

1 if : aq = ”0.019, [...], 0.24”

1 if : bq = ”8”

1 if : cq = ”true”

1 if : hdq = ”3”

1 if : ntq = ”4”

1 if : ttlq = ”120”

1 if : wq = ”10”

Table 4.4: Rows containing the parameter configuration for a replica detector

4.4.5.6 Storage optimizations

Storage can also be optimized taking profit of specific characteristics of our implementation

and its redundancy. In the previous subsections we have seen that each block of a hash
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table references the entry in the feature table of the feature it belongs to. Moreover, we

have seen that this reference is identified by the feature id, that is built using the sketch

representation of the feature and the image identifier. When querying a feature to the

database, we need to query all hash tables and for each candidate, query also the feature

table to get the sketch representation. However, this representation is already embed-

ded into the feature identifier. It is straightforward that, in our specific implementation,

deleting the feature table would save us time (as we save a query to a table) and also

storage.

After testing this new optimization using 510 images indexed, that generated around

110, 000 features and querying 570 images to them, we conclude that:

• 18 MB were saved in the indexing process.

• The average query time got speeded up by a 2.3%, which is not very significant.

Though the average query time was not substantially reduced, we see that we get some

benefits that could be significant in large scale environments. We decide adopt this ap-

proach for the rest of the work.

4.4.5.7 Data encoding and compression

There are two mechanisms that can be applied to reduce storage in HBase: compression

and data block encoding. Compression reduces the size of byte array cells while data block

encoding takes advantage of design aspects of HBase (e.g. sorted row keys) to limit the

duplication of information. They both can be used together on a Column Family.

Different choices exist in HBase for both data block encoding and compression and it is

important to choose the right ones according to the specific application: wrong choices

could even lead to higher storage sizes and performance burdens. The criteria to decide

which to apply relies on the key and value length for the block encoding and the frequency

of access for the compression. We can consider data as hot data (accessed frequently)

because the data to access depends on the query one, that is random, and all information

has the same probability to be accessed. Snappy and LZO are the compressors available

for hot data, being Snappy the default since 2011 and proving to be faster. We decide to

use Snappy compression on the hash tables.

Data block encoding approaches are only recommended when keys are longer than values

or when tables have many columns. Considering that our tables have few columns and

that usually values are longer than the keys, we discard using data block encoding.
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HTableDescriptor desc = new HTableDescriptor("t");

HColumnDescriptor hcd = new HColumnDescriptor("f");

hcd.setDataBlockEncoding(DataBlockEncoding.FAST_DIFF);

Configuration c = HBaseConfiguration.create();

HBaseAdmin hbaseAdmin = new HBaseAdmin(conf);

hbaseAdmin.createTable(desc);

Figure 4.14: Creating a table t with FAST DIFF block encoding enabled on the column
family f

HTableDescriptor desc = new HTableDescriptor("t");

HColumnDescriptor hcd = new HColumnDescriptor("f");

hcd.setCompressionType(Algorithm.SNAPPY);

Configuration c = HBaseConfiguration.create();

HBaseAdmin hbaseAdmin = new HBaseAdmin(conf);

hbaseAdmin.createTable(desc);

Figure 4.15: Creating a table t with Snappy compression on the column family f

Our experiments using 510 indexing images and 570 image queries showed that Snappy

compression saves 1.69% of storage preserving the indexing and querying time. We decide,

then, to adopt the compression in our system. Though, again it is not significant in a small

context it may be in large scale environments.

4.4.5.8 Size

Storage is an important aspect part of our implementation though it is not critical. We

want to measure the space needed to store each feature and image but HBase does not

provide a mechanism to size the data stored. Instead, we check the average size of the

HBase data folder after performing several probes, havint the results in Table 4.5.

Element Size (bytes)

Image metadata 150− 250

Feature per table 53

Table 4.5: Average sizes on HBase

Considering these results and assuming that we extract an average of 250 features (without

feature filtering) per image using 4 hash tables, we would need at most (53 ∗ 4 ∗ 250 +

250) ∗ 50 · 106 = 2.66 TB of data to index 50 million images. Usually HBase will use more

data than that because of its overhead (e.g.: WAL files increase the size of the folder and

old WALs are also kept). HBase can be configured to replicate data but we disabled this

option to save disk space.



Chapter 5

Results

Once our framework is defined and built a way to validate its outcomes must be designed.

In this section we detail the data we used to evaluate our implementation, the evaluation

criteria and the experiments performed.

5.1 Data sets

Though a lot of work has already been done on near replica image detection, there is no

related open dataset where to evaluate our approach from. Most of the works analysed

built they own datasets getting their images from search engines or general data bases and

then applied transformations on them using a variety of tools (e.g. ImageMagick [31]),

but none of them are public. [15] published the data set used in their work but it is no

longer available online.

There is a related replica detection dataset called Affine Covariant Regions dataset [32].

It contains 8 groups of 6 images where 5 of them are modifications from the original one.

Transformations are complex, sometimes combined (zoom + rotation) and some of them

are out of the scope of our detector (viewport change). However, we need a more complete

dataset containing more examples and types of transformations. To test our system we

decide to build our own data set: the UPCReplica dataset.

5.1.1 UPCReplica data set

For the evaluation and the tuning of the parameters of our the implementation we define

an annotated data set of 3.925 images, consisting of:
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Figure 5.1: Examples of background images from the UPCReplica dataset

• 2, 275 ’background’ (BI) images. Those are assumed to be images that have no

replica within the data set. Figure 5.1 shows some examples.

• 50 ’source images’ (SI). They are the set of images we compute replicas from.

• 1, 600 ’replicas’ (R). Modified versions of the SI images.

Twitter Streaming API [33] have been used to get the 2,325 images that conform both

the BI and SI sets and have been manually checked to delete all replicas. A set of 14

transformations (Table 5.1) has been defined to generate modified versions (replicas) of

the SI and 32 versions of each image have been generated using OpenCV.

The UPCReplica data set has been made public to be used under GPL 2.0 license in order

to empower research on this topic and can be accessed online [23].

5.1.2 Data set 2: Desigual dataset

This second dataset contains 16,000 random images extracted from Instagram containing

the tag ”Desigual”, a popular Spanish clothing brand. These unlabelled images have been

used for the scalability tests performed.

5.2 Experiments design

Different experiments must be designed to test all parameters seen so far. The first one

is intended to measure the capability of finding near duplicates using different descriptor

types and the impact of using different sketching sensitivities. The second experiment

evaluates how false positives can be reduced by feature filtering. The third experiment

covers the impact of the weight filtering of the replica matches on both the precision and

the recall. The fourth experiment is intended to evaluate the performance of the selection

of parameters from previous experiments. Fifth experiment compares the performances of
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Operation Parameters Number of replicas

Rotation degrees=30, 90,
180, 270

4

Horizontal cropping keep 75 % and
50%

2

Channel V modification +10 % and -10% 2

Channel S modification +10 % and -10% 2

Vertical cropping keep 75 % and
50%

2

JPEG compression quality=0.1, 0.3,
0.5, 0.7

4

Resizing scale=0.5, 0.8,
1.2, 1.5

4

Gaussian noise addition mean=0.0,
variance=0.1;
mean=0.0, vari-
ance=0.25

2

Averaging filter kernel size=2,3 2

Horizontal flipping none 1

Gamma correction gamma=0.25,
0.6, 1.5, 1.8

4

Text addition length=15 1

Occlusion using black circles circles number=3,
size=10%; cir-
cles number=2,
size=15%

2

Total 32

Table 5.1: List of image modifications

precision =
truePositives

truePositives + falsePositives
(5.1)

Definition of precision

recall =
truePositives

truePositives + falseNegatives
(5.2)

Definition of recall

memory-based and disk-based implementations. Sixth experiment focus on the scalability

of the system. Seventh experiment faces the detector to real life image modifications and

the eight and last experiment is performed on the Affine Covariant Regions dataset.

In each experiment we evaluated the elapsed time of both indexing and querying, and the

precision (5.1) and the recall (5.2) of each result.
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All experiments have been tested on our development machine: a single host with a

Xubuntu 12.0.4 operative system, 4GB of RAM memory and a Pentium(R) Dual Core

T4300 2.10 Ghz and local Apache Spark and HBase configurations. All experiments ex-

cept from Experiment 6 have been tested using disk persistence of the data (HBase). A

consideration must be done before evaluating the results: a different random hash func-

tion has been used in each probe to generate the sketches and may explain some random

behaviours in the results.

5.2.1 Experiment 1: Descriptors

For this experiment we define two sets of images from the UPCReplica dataset:

• Base set : set of 10 source images and 500 background images.

• Query set : set of 250 background images and all 320 replica images generated from

the source images in the base set.

This experiment consists of indexing the base set and then match the query set against the

indexed data using different descriptors and modifying the sketching sensitivity parameter

W . Keypoint detection is made using BRISK and images are resized to 350 pixels its largest

side and converted into grayscale. Results can be found in Figure 5.2 and Figure 5.3.

Looking at both the query and indexing times we see how it is directly affected by the

number of tables used to approximate the hamming distance: being the SIFT using 8

tables the slowest, then probes using 4 tables (and being the SIFT one the slowest among

them because of being more computationally expensive) and last probes using 2 hash

tables.

Figure 5.2: Precision and recall for variable sketching sensitivity
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ORB and BRIEF show very low precisions at all levels (below 50 % most of the time) and

will be discarded in future experiments. Overall recall grows as W does but at high values

the precision starts to fall dramatically, specially in configurations with higher hamming

thresholds.

Figure 5.3: Indexing and query average time for variable sketching sensitivity

From remaining configurations we want to select those that have best performance using

less hash tables and thus being faster. SIFT probes with 8 tables show very good true

positive rate at high W but poor precisions. At smaller values of W where SIFT precision is

still high, BRISK configurations outperform them by similar recalls and smaller response

time. We select the best configuration from the ones using 16 bits per sketched block

and the only two configurations using 32 bits per block. This is an important fact because

smaller block utilization may lead to higher collisions rate, as commented in Section 3.1.0.3,

and therefore less chances to scale. The three configurations selected are:

• BRISK descriptors using 4 tables, hamming threshold of 3 and W = 25 (BRISK4t3h).

• SIFT descriptors using 4 tables, hamming threshold of 3 and W = 30 (SIFT4t3h).

• BRISK descriptors using 2 tables, hamming threshold of 1 and W = 45 (BRISK2t1h).

FREAK descriptors could not be tested due to unexpected errors with OpenCV.

5.2.2 Experiment 2: Feature filtering

In Section 3.0.2 we saw how it was not possible to distinguish between high quality and

regular feature vectors by their entropy and variance. Nevertheless, considering that only

one match is enough for finding a replica, it is possible to discard some of the strong
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features in order to increase precision and reduce response time and still preserve all

(or most of) feature matches. Configurations selected are the ones from the previous

experiment, named as SIFT4t3h, BRISK4t3h and BRISK2t1h.

The results from applying different variance and entropy thresholds are shown in Fig-

ure 5.4 and in Figure 5.5. We observe that precision increases in BRISK2t1h configuration

while BRISK4t3h improves using entropy and shows a random and poor behaviour us-

ing variance. SIFT4t3h remains without false positives in both filtered and non-filtered

configurations.

In both cases, as the filtering threshold rises, the indexing and querying time averages

decrease. However, the recall starts to fall at high levels of filtering. We must find a

balance between high precision and good recall using the highest filtering threshold to

obtain the smallest response time. Table 5.2 shows the selected threshold for each of the

3 configurations tested.

Configuration Filtering

type

Threshold Precision(%) Recall

loss (%)

Indexing

speed

up (%)

Querying

speed up (%)

Features

discarded

(%)

BRISK4t3h Entropy 4.6 100.0 2.5 5.31 12.78 27.28

BRISK2t1h Variance 7,500 100.0 4.71 2.35 3.68 7.41

SIFT4t3h Variance 900 100.0 0.32 25.75 23.37 52.63

Table 5.2: Selected feature filtering thresholds and impact on performances

After feature filtering BRISK4t3h processes around 210 features per image, BRISK2t1h

around 250 features per image and SIFT4t3h around 105 features per image.

5.2.3 Experiment 3: Filtering weighted results

This experiment tests how the weight assigned to each matched image can be used to

improve precision and preserve a decent recall by setting a threshold on it. First of all,

we test the configurations from the previous experiment on a subset of the UPCReplica

dataset. We index 650 images and query 3,276 images against them: 1,600 replicas and

1,676 background images.

Configuration Precision(%) Recall (%)

BRISK4t3h 98.15 76.50

BRISK2t1h 77.77 70.63

SIFT4t3h 97.69 63.00

Table 5.3: Results for the UPCReplica dataset

The results from Table 5.3 show good recalls but precisions still not the expected.
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Figure 5.4: Performance results for entropy and variance filtering on BRISK sketches
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Figure 5.5: Performance results for entropy and variance filtering on SIFT sketches
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Configuration Precision(%) Recall (%)

BRISK4t3h 98.15 76.50

BRISK4t3h + WF (thresh = 2) 99.82 69.13

BRISK4t3h, W = 20 99.41 74.86

BRISK4t3h, W = 15 99.24 74.25

BRISK4t3h, W = 10 99.57 73.06

BRISK2t1h 77.77 70.63

BRISK2t1h + WF (thresh = 2) 99.89 59.13

BRISK2t1h, W = 40 97.69 68.75

BRISK2t1h, W = 35 98.19 64.43

BRISK2t1h, W = 30 99.90 62.56

SIFT4t3h 97.69 63.00

SIFT4t3h + WF (thresh = 2) 99.32 54.44

SIFT4t3h, W = 25 99.78 56.81

Table 5.4: Results for weight ranking

Figure 5.6 show the density of weights for both false positives and true positives for the

three configurations. We observe that most of the false positives have a small weight of

but a big percentage of true positives also fall in that interval. Again, it is not possible to

decrease false positives without affecting the true positive rate.

Figure 5.6: Distribution of weights

The same experiment is performed, using weight filtering (WF) and also different levels of

W . Results can be found in Table 5.4, showing that WF achieves to increase precision but

penalising the recall. In both BRISK2t1h and SIFT4t3h reducing the hashing sensitivity

W obtains the same effect on precision and preserves better the true positives rate.

We confirm that filtering by the weight is a good option to improve precision but in many

cases reducing the sketching sensitivity performs similar or even better.
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5.2.4 Experiment 4: UPC Replica dataset

After all parameters have been tuned we want to see how the resulting configurations

perform on the complete UPCReplica dataset, indexing 2, 076 images and querying 1, 600

replicas and 250 background images against them.

Configuration Precision(%) Recall (%) Indexing average

time (ms)

Query average time

(ms)

BRISK2t1h, W = 30 98.00 67.56 168.99 394.59

BRISK2t1h + WF

(thresh = 2)

99.80 67.34 176.80 399.21

BRISK4t3h, W = 10 97.78 74.36 298.60 827.51

BRISK4t3h + WF

(thresh = 2)

98.56 72.50 298.16 1078.50

SIFT4t3h, W = 25 93.03 62.56 334.49 613.66

SIFT4t3h + WF

(thresh = 2)

99.53 53.06 331.382 584.20

Table 5.5: Results for the UPCReplica dataset

Table 5.5 shows the results, proving that some precisions are still far from the 99% the

expected we set as requirement. A deeper analysis of the false positives encounters that

not all of them could be considered in the same way and we identify 3 categories of false

positives:

• Replica match: Though the dataset was manually checked several times some images

detected are identified as resized replicas of others. These images have been removed

from the final dataset that is available online.

• High similarity match: Images that do not come from the same source but share a

lot of traits. All of them belong to sreenshots of the same mobile application where

the common interface is an important element of the structure of the picture.

• Similar match: Images do not share significant characteristics but their structures

are similar and are easily mismatched by the detector.

• False positive match: Images matched are completely different from each other.

Figure 5.7 show examples of the different levels of similarity between false positives. We

assign all false positives detected to one of the categories defined and identify their weight

relative to the total amount of false positives.

Considering the numbers in Table 5.6 we see how precisions are highly improved when

replica matches are erased and how most of them lie close to the 100 % when we also

consider the very similar ones (High Similarity).
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Figure 5.7: Example of high similarity (left), similarity (center) and non-similarity
(right) between false positive matches

Configuration Replicas(R) High simi-

larity(HS)

Similar(S) False posi-

tives(FP)

Precision

+ (R)

Precision +

(R) + (HS)

BRISK2t1h,

W = 30

9.09 18.18 4.55 68.18 98.18 98.54

BRISK2t1h +

WF (thresh =

2)

50.00 50.00 0.00 0.00 99.90 100.00

BRISK4t3h,

W = 10

69.23 15.38 3.85 11.54 99.31 99.59

BRISK4t3h +

WF (thresh =

2)

89.47 10.53 0.00 0.00 99.85 100.00

SIFT4t3h, W =

25

18.98 33.78 40.54 6.76 94.35 96.71

SIFT4t3h + WF

(thresh = 2)

0.00 25.00 75.00 0.00 99.53 99.65

Table 5.6: Percentage of false positive matches depending on its transformation type
for UPCReplica dataset

We are interested in knowing which image transformations are easily tracked and those

harder to detect. The detection ratio of each image modification can be found in Figure 5.8.

We can extract several conclusions from it:

• Image attacks based on color and occlusions are the easiest to detect.

• Resizing, gamma correction, compression and smoothing have also very good results

and are not detected in extreme conditions.

• Vertical cropping has also high ratio detection but horizontal cropping barely tres-

passes the 50% threshold. It may happen because usually background elements are

placed in both top and bottom of images rather than in the sides.

• Rotation shows a poor ratio around 20%.
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Figure 5.8: Ratio of detected replicas for all image transformations in the UPCReplica
dataset

• Horizontal flipping is rarely detected. It may be explained because it is a global

change of the image that cannot be detected by local descriptors: the orientation

bins cannot detect the flipped orientations.

• Gaussian noise addition are also never detected. It is expected because the noise

it applies to the image generates loads of intensity changes that are misclassified as

keypoints.

For the rest of experiments we will just consider those configurations that had more than

99% of precision in the UPCReplica dataset, that are:

• BRISK2t1h using weight filtering of 2 (BRISK2t1hWF).

• BRISK4t3h with W = 10 (BRISK4t3hW10).
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• BRISK4t3h using weight filtering of 2 (BRISK4t3hWF).

• SIFT4t3h using weight filtering of 2 (SIFT4t3hWF).

5.2.5 Experiment 5: Memory vs Disk

This experiment tries to compare both memory-based and disk-based implementations and

observe how we can speed up the detector by caching the content on the main memory.

Nonetheless, results showed that, in small scales, the overhead introduced by the multiple

number of Spark jobs in the memory-based implementation is too expensive to compute

and forces it not to scale and lose the real-time behaviour. Because of that, further

experiments in this work will only focus on the disk-based approach. Further work must

be done to observe the behaviour of both implementations in large scale contexts.

5.2.6 Experiment 6: Proving scalability

A key element of our design is to be able to scale to large environments with millions

of images. However, our development environment is reduced to a single development

machine and it only allows us to perform small-scale tests up to a few thousands of images.

Cloud computing platforms such as Amazon EC2 were not used for large scale testing

because that would need extra time that was not considered in our initial planning.

The goal of this experiment is to see the evolution of query and indexing time after

indexing different sets from the Desigual dataset with increasing sizes. In each case 250

random images from the dataset have been queried. The results in Figure 5.9 show that

indexing time not only remains constant but also decreases. The query time remains

constant for BRISK2t1hWF and SIFT4t3hWF but starts to increase at few thousands of

images for BRISK4t3hW10 and BRISK4t3hWF. This can be explained because these two

configurations use BRISK sketches (binary vectors of length 64) and 4 blocks, and each

block represents 16 bits out of the whole sketch, leading to a higher probability of collision

between the features and therefore processing more candidates per feature.

From this part of the experiment we can conclude that, as we expected, our implementation

scales in small contexts for configurations using sketch blocks of 32 bits.

5.2.7 Experiment 7: Real life examples

This test evaluates the performance of the detector on synthetic replicas handmade gen-

erated inspired by quotidian image transformation: memes, image collages and handmade
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Figure 5.9: Average indexing (left) and query (right) time for increasing number of
images

drawings. Figure 5.10 are some of these examples. 5 images have been queried against

2,283 indexed images using the configurations resulting from the previous experiments.

The conclusions have been:

• No false positives are found

• Meme images are detected as replicas of the original ones.

• Drawing are detected as replica of the original one.

• Only those images that are predominant in the collages are detected as replicas.

Figure 5.10: Examples of quotidian image transformations

5.2.8 Experiment 8: Affine Covariant Regions dataset

The last experiment of the set faces the detector to aggressive transformations in the Affine

Covariant Regions dataset. This dataset contains 8 groups of 6 images: 1 source image

and 5 replicas from a specific image modification type. These groups are:

• Bikes and Trees: blurred replicas. Examples of this group can be found in Fig-

ure 5.11.
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• Graffiti and Wall : viewpoint changes.

• Boat and Bark : zoom and rotation changes.

• Leuven: light modifications.

• UBC : compressed replicas.

Figure 5.11: Examples of images from the Bike group of the Wall dataset

The results in Table 5.7 show that our detector is still far from detect replicas under hard

conditions of light and blur but works fine with compression.

Configuration Bikes

(blur)

Trees

(blur)

Leuven

(light

changes)

UBC (com-

pression)

BRISK2t1hWF 0.0 0.0 0.0 0.4

BRISK4t3hW10 0.2 0.0 0.2 0.8

BRISK4t3hWF 0.2 0.0 0.0 0.6

SIFT4t3hWF 0.0 0.0 0.2 0.6

Table 5.7: Recall ratio for each group tested from the Affine Covariant Regions dataset



Chapter 6

Conclusions

6.1 Conclusions

We have presented a distributed implementation of image near replica detection system

based on the generalization of the work in [17] for both batch and streaming use cases. In

the evaluation stage we achieved precisions above 99 % in most of the probes, peak recalls

around the 70% and average real-time responses within 3 seconds. We summarize some of

the conclusions from this work:

• BRISK keypoint detectors and BRISK descriptors have shown the best balance be-

tween time efficiency and good performance.

• Scalability of the system has been partially proved (only in small scale) and would

need further work to be fully demonstrated.

• We have observed the incapability of fully distinguish high quality features from the

feature set using two measures (entropy and variance) and the benefits of feature

filtering speeding up the time responses but penalising the detection rate.

• Sketching sensitivity W has been identified as an important parameter of the imple-

mentation that directly influences the true detection rate but generates poor preci-

sions at high values.

• Filtering results by weight have proved to be efficient to improve precision but at

the same time penalises a lot the true positive ratio. In some cases, similar results

have been obtained by reducing W .

• Memory-based implementation has shown a poor performance due to the overhead

introduced by Spark but needs further analysis.
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• Our implementation is robust to color based modifications (e.g. channel modifica-

tion, gamma correction), occlusions, compressions and smoothed replicas, partially

robust to resizing and croppings. It also performs well for quotidian image attacks

such as memes and drawings and partially to collages.

• On the other hand, it is weak to rotations and not valid for Gaussian noise addition

and flipping transformations.

6.2 Outcomes

This near replica detection implementation is available on [34]. The specific dataset built

for the evaluation is also public and can be accessed here [23]. We are currently working

on a publication for the Special Issue on Multimedia Analytics of the Signal Processing

Journal [35].

6.3 Scheduling

Through all the year we have been keeping the pace of the starting scheduling. However,

due to problems with the development environment, the testing stages took more than the

expected and we had to work extra hours during the last month of the project, doubling

the time spent on it per day. That means that 60 hours of development were added to

the initial bag of hours computed in the planning. The updated costs of the project are

presented in Table 6.1 and Table 6.2.

Role Dedication
hours

Hours
needed

Income per
hour (e)

Initial
estimation

(e)

Updated
cost (e)

Research
analyst

405 405 25 10, 125 10, 125

Developer 345 405 18 6, 210 7, 290

Total 16, 335 17, 415

Table 6.1: Updated human resources costs

6.4 Future work

There are still a lot of areas of improvement to be further analysed. We gave support to

a limited set of features (e.g. SIFT, ORB) and work could be done to integrate new and

more distinctive features such as PCA-SIFT.
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Type of cost Estimated (e) Updated (e)

Human costs 16, 335 17, 415

Hardware costs 521.13 521.13

Software 0 0

Total 16, 856.13 17, 936.13

Table 6.2: Updated total costs

OpenCV can be speeded up using the native CUDA for taking advantage of the GPU

processing. Nonetheless, OpenCV showed several problems: lack of Java documentation

and instability during the the evaluation phase. By the end of this work we found a library

called OpenImaj that could replace the role of OpenCV.

Full scalability evaluation still has to be performed and further work could emphasize on

deploying the detector on a real cluster. Memory-based implementation also need deeper

analysis.

Another idea that appeared during the development process was to serialize similarities

between the indexed images and to have a graph-like structure persisting this information.

Finally, further analysis of how this replica detector could be also used for image similarity

detection could be performed, using public datasets such as INRIA Holidays dataset [36]

or IND dataset [37].



Appendix A

Descriptor values distributions

Figure A.1: Distribution of SIFT descriptor values and relation between entropy and
variance for 320 images

Figure A.2: Distribution of SURF descriptor values and relation between entropy and
variance for 320 images
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Figure A.3: Distribution of ORB descriptor values for 320 images

Figure A.4: Distribution of BRIEF descriptor values for 320 images

Figure A.5: Distribution of FREAK descriptor values for 320 images
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Figure A.6: Distribution of BRISK descriptor values for 320 images



Appendix B

Descriptor distributions

B.1 Spark lineage graphs for batch indexing use case

Figure B.1: Lineage graph for the disk-based implementation of the batch query use
case
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Figure B.2: Lineage graph for the memory-based implementation of the batch query
use case

B.2 Spark lineage graphs descriptor for batch query use case

Figure B.3: Lineage graph for the disk-based implementation of the batch indexing use
case

Figure B.4: Lineage graph for the memory-based implementation of the batch indexing
use case
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