11,740 research outputs found

    The English-Language Proficiency of Recent Immigrants in the U.S. During the Early 1900s

    Get PDF
    Using U.S. decennial census data, we find that in 1920, immigrants (particularly those from Southern and Eastern Europe) were more likely to speak the English language within three years of migrating than their counterparts had been in either 1900 or 1910. Our results suggest that the foreign-born reacted to socioeconomic and political events by learning English before or shortly after migrating to the U.S. This study not only provides previously unknown information about immigrants’ English fluency in the early twentieth century, but it also offers empirical insight into the assimilation pressures that certain immigrant groups experienced at the time.

    ³¹P Saturation Transfer and Phosphocreatine Imaging in the Monkey Brain

    Get PDF
    ³¹P magnetic resonance imaging with chemical-shift discrimination by selective excitation has been employed to determine the phosphocreatine (PCr) distribution in the brains of three juvenile macaque monkeys. PCr images were also obtained while saturating the resonance of the {gamma}-phosphate of ATP, which allowed the investigation of the chemical exchange between PCr and the {gamma}-phosphate of ATP catalyzed by creatine kinase. Superposition of the PCr images over the proton image of the same monkey brain revealed topological variations in the distribution of PCr and creatine kinase activity. PCr images were also obtained with and without visual stimulation. In two out of four experiments, an apparently localized decrease in PCr concentration was noted in visual cortex upon visual stimulation. This result is interpreted in terms of a possible role for the local ADP concentration in stimulating the accompanying metabolic response

    Reducing the size and number of linear programs in a dynamic Gr\"obner basis algorithm

    Full text link
    The dynamic algorithm to compute a Gr\"obner basis is nearly twenty years old, yet it seems to have arrived stillborn; aside from two initial publications, there have been no published followups. One reason for this may be that, at first glance, the added overhead seems to outweigh the benefit; the algorithm must solve many linear programs with many linear constraints. This paper describes two methods of reducing the cost substantially, answering the problem effectively.Comment: 11 figures, of which half are algorithms; submitted to journal for refereeing, December 201

    proposal of a methodology for achieving a leed o m certification in historic buildings

    Get PDF
    Abstract Nowadays resources are running out quickly, it's necessary to consider how the construction industry influences the environment using different materials and sources during all the building's life cycle. For this reason, in every transformation phases it's necessary to consider concepts as sustainability and green buildings. These are diffused from hundreds kind of green assessment tools, developed to measure sustainability goals in building sector and to compare the project with possible best practices or other green buildings. In this background, the rating system LEED (Leadership in Energy and Environmental Design) aims to examine and classify buildings according to energetic and environmental requirements. The particular LEED O+M (Building Operations and Maintenance) is developed for existing buildings undergoing improvement work or little to no construction and is based on the operative and management aspects. The certification process results, at a first analysis, hard to follow due to the complexity of internal parameters and the documentation required. The paper consists in a methodology and in an univocal work program of LEED O+M, trying to obtain the minimum requested certification score with optimization of the technical resources and documents. This methodology has application in a case study of historic building: the Ca' Rezzonico Museum, in the center of Venice

    Cost-Optimal measures for renovation of existing school buildings towards nZEB

    Get PDF
    Abstract The energy policies of the European Union (EU) encourage the member states to convert building stock into nearly Zero-Energy Buildings (nZEB) and national public authorities to adopt exemplary actions. Directive 2010/31/EU (EPBD recast) introduces the concept of nZEB as a building that has a very high energy performance and its energy need is covered to a very significant extent by energy from renewable sources (RES). Moreover the Directive refers to the cost-optimal methodology for fixing building energy requirements. This paper presents the results of the application of the cost-optimal methodology in a couple of existing school buildings located in the North East of Italy. The analysed buildings are a primary and a secondary schools that differ in construction period, in compactness ratio, in buildings envelope materials and systems. Several combinations of retrofit measures have been applied in order to derive cost-effective efficient solutions for retrofitting according to the methodology proposed by the project Annex56 "Cost Effective Energy & CO2 Emissions Optimization in Building Renovation". The cost-optimal level has been identified for each building and the best performing solutions have been selected considering a financial analysis and the application of "Conto Termico 2.0" government incentives. The results show the suitability of the proposed methodology to assess cost-optimality and energy efficiency in school building refurbishment. Moreover, this study shows different possibility providing the most cost-effective balance between costs and energy saving

    Numerically generated quasi-equilibrium orbits of black holes: Circular or eccentric?

    Get PDF
    We make a comparison between results from numerically generated, quasi-equilibrium configurations of compact binary systems of black holes in close orbits, and results from the post-Newtonian approximation. The post-Newtonian results are accurate through third PN order (O(v/c)^6 beyond Newtonian gravity), and include rotational and spin-orbit effects, but are generalized to permit orbits of non-zero eccentricity. Both treatments ignore gravitational radiation reaction. The energy E and angular momentum J of a given configuration are compared between the two methods as a function of the orbital angular frequency \Omega. For small \Omega, corresponding to orbital separations a factor of two larger than that of the innermost stable orbit, we find that, if the orbit is permitted to be slightly eccentric, with e ranging from \approx 0.03 to \approx 0.05, and with the two objects initially located at the orbital apocenter (maximum separation), our PN formulae give much better fits to the numerically generated data than do any circular-orbit PN methods, including various ``effective one-body'' resummation techniques. We speculate that the approximations made in solving the initial value equations of general relativity numerically may introduce a spurious eccentricity into the orbits.Comment: 6 pages, 4 figures, to be submitted to Phys. Rev.

    Retrofit of an Historical Building toward NZEB

    Get PDF
    Abstract The European Directive on Energy Efficiency in Buildings (Directive 2010/31/EU) has introduced the need to transform buildings to nearly zero energy (NZEB) by 2020. Existing buildings represent the major part of the building stock and an interesting challenge is to transfer it toward NZEB. Energy retrofit is even more significant in Italy, where existing buildings stock (mainly residential) is also historic, so it's subject to environmental constraints or architectural-artistic value, and it's influenced by specific regulations and methods of intervention for refurbishment. In this case, the challenge becomes even more important and concerns both the building shell and the systems: retrofitting introduces not originally present in the complex; retrofit is not covered in the maintenance, since it represents an upgrade, an adaptation of the building, specifically in relation to energy efficiency, but also, by extension, other functions / features pertaining to the environment and sustainability. A case study of a radical refurbishment of an historical building is Ca' S. Orsola in Treviso. It is ruled by the Historical and Architectural Veneto Regional Authority. The building has been transformed into a prestigious residential complex by a major renovation that was aimed primarily seismic and energy upgrading. The energy and environmental performance of building have been analyzed by numerical simulation and experimental measurement in the EBC IEA Annex 56 [1] context with the aim to verify that intervention strategies respect to the reduction of energy consumption, the minimization of CO 2 emissions and maximizing the use of sources of renewable energy

    Star clusters dynamics in a laboratory: electrons in an ultracold plasma

    Full text link
    Electrons in a spherical ultracold quasineutral plasma at temperature in the Kelvin range can be created by laser excitation of an ultra-cold laser cooled atomic cloud. The dynamical behavior of the electrons is similar to the one described by conventional models of stars clusters dynamics. The single mass component, the spherical symmetry and no stars evolution are here accurate assumptions. The analog of binary stars formations in the cluster case is three-body recombination in Rydberg atoms in the plasma case with the same Heggie's law: soft binaries get softer and hard binaries get harder. We demonstrate that the evolution of such an ultracold plasma is dominated by Fokker-Planck kinetics equations formally identical to the ones controlling the evolution of a stars cluster. The Virial theorem leads to a link between the plasma temperature and the ions and electrons numbers. The Fokker-Planck equation is approximate using gaseous and fluid models. We found that the electrons are in a Kramers-Michie-King's type quasi-equilibrium distribution as stars in clusters. Knowing the electron distribution and using forced fast electron extraction we are able to determine the plasma temperature knowing the trapping potential depth.Comment: Submitted to MNRA

    31P saturation transfer and phosphocreatine imaging in the monkey brain.

    Full text link

    Modeling target bulk heating resulting from ultra-intense short pulse laser irradiation of solid density targets

    Get PDF
    Isochoric heating of solid-density matter up to a few tens of eV is of interest for investigating astrophysical or inertial fusion scenarios. Such ultra-fast heating can be achieved via the energy deposition of short-pulse laser generated electrons. Here, we report on experimental measurements of this process by means of time-and space-resolved optical interferometry. Our results are found in reasonable agreement with a simple numerical model of fast electron-induced heating. (C) 2013 AIP Publishing LLC.</p
    corecore