21 research outputs found

    A comparison of neural and non-neural machine learning models for food safety risk prediction with European Union RASFF data.

    Get PDF
    European Union launched the RASFF portal in 1977 to ensure cross-border monitoring and a quick reaction when public health risks are detected in the food chain. There are not enough resources available to guarantee a comprehensive inspection policy, but RASFF data has enormous potential as a preventive tool. However, there are few studies of food and feed risk issues prediction and none with RASFF data. Although deep learning models are good prediction systems, it must be confirmed whether in this field they behave better than other machine learning techniques. The importance of categorical variables encoding as input for numerical models should be specially studied. Results in this paper show that deep learning with entity embedding is the best combination, with accuracies of 86.81%, 82.31%, and 88.94% in each of the three stages of the simplified RASFF process in which the tests were carried out. However, the random forest models with one hot encoding offer only slightly worse results, so it seems that in the quality of the results the coding has more weight than the prediction technique. Our work also demonstrates that the use of probabilistic predictions (an advantage of neural models) can also be used to optimize the number of inspections that can be carried out.pre-print301 K

    Network analysis for food safety: Quantitative and structural study of data gathered through the RASFF system in the European Union.

    Get PDF
    This paper reports a quantitative and structural analysis of data gathered on the food issues reported by the European Union members over the last forty years. The study applies statistical measures and network analysis techniques. For this purpose, a graph was constructed of how different contaminated products have been distributed through countries. The work aims to leverage insights into the structure formed by the involvement of European countries in the exchange of goods that can cause problems for populations. The results obtained show the roles of different countries in the detection of sensitive routes. In particular, the analysis identifies problematic origin countries, such as China or Turkey, whereas European countries, in general, do have good border control policies for the import/export of food.pre-print1210 K

    Pathogenicity and virulence of Listeria monocytogenes: A trip from environmental to medical microbiology

    Get PDF
    Listeria monocytogenes is a saprophytic gram-positive bacterium, and an opportunistic foodborne pathogen that can produce listeriosis in humans and animals. It has evolved an exceptional ability to adapt to stress conditions encountered in different environments, resulting in a ubiquitous distribution. Because some food preservation methods and disinfection protocols in foodprocessing environments cannot efficiently prevent contaminations, L. monocytogenes constitutes a threat to human health and a challenge to food safety. In the host, Listeria colonizes the gastrointestinal tract, crosses the intestinal barrier, and disseminates through the blood to target organs. In immunocompromised individuals, the elderly, and pregnant women, the pathogen can cross the blood-brain and placental barriers, leading to neurolisteriosis and materno-fetal listeriosis. Molecular and cell biology studies of infection have proven L. monocytogenes to be a versatile pathogen that deploys unique strategies to invade different cell types, survive and move inside the eukaryotic host cell, and spread from cell to cell. Here, we present the multifaceted Listeria life cycle from a comprehensive perspective. We discuss genetic features of pathogenic Listeria species, analyze factors involved in food contamination, and review bacterial strategies to tolerate stresses encountered both during food processing and along the host’s gastrointestinal tract. Then we dissect host–pathogen interactions underlying listerial pathogenesis in mammals from a cell biology and systemic point of view. Finally, we summarize the epidemiology, pathophysiology, and clinical features of listeriosis in humans and animals. This work aims to gather information from different fields crucial for a comprehensive understanding of the pathogenesis of L. monocytogenes

    Pharmacokinetic Studies in Elasmobranchs: Meloxicam Administered at 0.5 mg/kg Using Intravenous, Intramuscular, and Oral Routes to Nursehound Sharks (Scyliorhinus stellaris)

    Get PDF
    Infectious and inflammatory diseases are the most frequently diagnosed pathologies in elasmobranchs maintained under human care. Non-steroidal anti-inflammatory drugs (NSAIDs) are frequently used in veterinary medicine for their anti-inflammatory, analgesic, and antipyretic properties. Meloxicam is a commonly prescribed NSAID in elasmobranchs, but there are still no published pharmacokinetic (PK) studies supporting its use in this group of animals. In this study, meloxicam was administered at a single dose of 0.5 mg/kg to eight healthy adult nursehound sharks (Scyliorhinus stellaris) intravenously (IV), intramuscularly (IM), and orally (PO), with a minimum 4-week washout period between administrations. Blood samples were obtained both beforehand and at predetermined times after each administration. Plasma concentrations were measured using a validated high performance liquid chromatography method, and PK data was obtained using a non-compartmental analysis. Meloxicam administered orally did not produce detectable concentrations in blood plasma, while mean peak plasma concentration was 0.38 ± 0.08 μg/ml after IM administration. The mean terminal half-life was 10.71 ± 2.77 h and 11.27 ± 3.96 h for IV and IM injections, respectively. The area under the curve extrapolated to infinity was 11.37 ± 2.29 h·μg/ml after IV injections and 5.98 ± 0.90 h·μg/ml after IM injections. Meloxicam administered IM had a mean absolute bioavailability of 56.22 ± 13.29%. These numbers support meloxicam as a promising drug to be used IM in nursehounds, questions the efficacy of its single PO use in elasmobranchs, elucidate the need for higher dosage regimes, and evidence the need for further PK studies in sharks and rays

    Autophagy and lipid droplets are a defense mechanism against toxic copper oxide nanotubes in the eukaryotic microbial model Tetrahymena thermophila

    Get PDF
    The widespread use of inorganic nanomaterials of anthropogenic origin has significantly increased in the last decade, being now considered as emerging pollutants. This makes it necessary to carry out studies to further understand their toxicity and interactions with cells. In the present work we analyzed the toxicity of CuO nanotubes (CuONT) in the ciliate Tetrahymena thermophila, a eukaryotic unicellular model with animal biology. CuONT exposure rapidly induced ROS generation in the cell leading to oxidative stress and upregulation of genes encoding antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase), metal-chelating metallothioneins and cytochrome P450 monooxygenases. Comet assays and overexpression of genes involved in DNA repair confirmed oxidative DNA damage in CuONT-treated cells. Remarkably, both electron and fluorescent microscopy revealed numerous lipid droplets and autophagosomes containing CuONT aggregates and damaged mitochondria, indicating activation of macroautophagy, which was further confirmed by a dramatic upregulation of ATG (AuTophaGy related) genes. Treatment with autophagy inhibitors significantly increased CuONT toxicity, evidencing the protective role of autophagy towards CuONTinduced damage. Moreover, increased formation of lipid droplets appears as an additional mechanism of CuONT detoxification. Based on these results, we present a hypothetical scenario summarizing how T. thermophila responds to CuONT toxicity. This study corroborates the use of this ciliate as an excellent eukaryotic microbial model for analyzing the cellular response to stress caused by toxic metal nanoparticles

    Metabolic reprogramming by Acly inhibition using SB-204990 alters glucoregulation and modulates molecular mechanisms associated with aging

    Get PDF
    19 Páginas.-- 7 FigurasATP-citrate lyase is a central integrator of cellular metabolism in the interface of protein, carbohydrate, and lipid metabolism. The physiological consequences as well as the molecular mechanisms orchestrating the response to long-term pharmacologically induced Acly inhibition are unknown. We report here that the Acly inhibitor SB-204990 improves metabolic health and physical strength in wild-type mice when fed with a high-fat diet, while in mice fed with healthy diet results in metabolic imbalance and moderated insulin resistance. By applying a multiomic approach using untargeted metabolomics, transcriptomics, and proteomics, we determined that, in vivo, SB-204990 plays a role in the regulation of molecular mechanisms associated with aging, such as energy metabolism, mitochondrial function, mTOR signaling, and folate cycle, while global alterations on histone acetylation are absent. Our findings indicate a mechanism for regulating molecular pathways of aging that prevents the development of metabolic abnormalities associated with unhealthy dieting. This strategy might be explored for devising therapeutic approaches to prevent metabolic diseases.This work was funded by grants from the Ministerio de Economía y Competitividad, Instituto de Salud Carlos III, co-funded by Fondos FEDER (PI15/00134, PI18/01590, CPII19/00023 to A.M.M.) and the Ministerio de Ciencia e Innovación (PID2021-123965OB-100 to A.M.M.). A.M.M. is funded by the Junta de Andalucía P20_00480, the Spanish Society of Diabetes, and CSIC 202220I059. M.S.K. is funded by the Nordea Foundation (#02-2017-1749), the Novo Nordisk Foundation (#NNF17OC0027812), the Neye Foundation, the Lundbeck Foundation (#R324-2019-1492), the Ministry of Higher Education and Science of Denmark (#0238-00003B). V.C.G. is funded by the Instituto de Salud Carlos III (CP19/00046), co-funded by FEDER. F.M. is funded by the CIBERDEM of the Instituto de Salud Carlos III. A.M.M. is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. We acknowledge the support of the group of basic research on diabetes of the Spanish Society of Diabetes.Peer reviewe

    End-binding protein 1 regulates the metabolic fate of CD4+ T lymphoblasts and Jurkat T cells and the organization of the mitochondrial network.

    Get PDF
    The organization of the mitochondrial network is relevant for the metabolic fate of T cells and their ability to respond to TCR stimulation. This arrangement depends on cytoskeleton dynamics in response to TCR and CD28 activation, which allows the polarization of the mitochondria through their change in shape, and their movement along the microtubules towards the immune synapse. This work focus on the role of End-binding protein 1 (EB1), a protein that regulates tubulin polymerization and has been previously identified as a regulator of intracellular transport of CD3-enriched vesicles. EB1-interferred cells showed defective intracellular organization and metabolic strength in activated T cells, pointing to a relevant connection of the cytoskeleton and metabolism in response to TCR stimulation, which leads to increased AICD. By unifying the organization of the tubulin cytoskeleton and mitochondria during CD4+ T cell activation, this work highlights the importance of this connection for critical cell asymmetry together with metabolic functions such as glycolysis, mitochondria respiration, and cell viability.This study was supported by grants S2022/BMD-7209- INTEGRAMUNE-CM to NBMC from the Madrid Regional Government, PDC2021-121719-I00 and PLEC2022-009298 (AEI/ FEDER, UE) from the Spanish Ministry of Economy and Competitiveness (MINECO). Work in the MI lab is funded by grant PID2020-114148RB-I00 from the Spanish Ministry of Science and Innovation MCIN/AEI/ 10.13039/501100011033, which was in part granted with FEDER funding (EC). CIBER Cardiovascular (Fondo de Investigación Sanitaria del Instituto de Salud Carlos III and co-funding by Fondo Europeo de Desarrollo Regional FEDER). ÁG-M is supported by an Investigo Grant by SEPE (Fondos de Resiliencia), Gobierno de España. SR is supported by a Sara Borrell fellowship from ISCIII and DC-F is supported by a fellowship from “la Caixa” Foundation (LCF/BQ/DR19/11740010). CS is supported by PEJ-2021-TL/BMD-21204 “Garantı́ a Juvenil” grant form Comunidad de Madrid. ML-P is a FPI fellowship (PRE2021- 097478) from the Spanish Ministry of Science and Innovation. The Centro Nacional de Investigaciones Cardiovasculares (CNIC) is supported by the ISCIII, the Ministerio de Ciencia e Innovación and the Pro CNIC Foundation. The CNIC is a Severo Ochoa Center of Excellence (MINECO award CEX2020-001041-S). Funding agencies have not intervened in the design of the studies, with no copyright over the study.S

    Pathogenicity and virulence of Listeria monocytogenes: A trip from environmental to medical microbiology

    No full text
    Listeria monocytogenes is a saprophytic gram-positive bacterium, and an opportunistic foodborne pathogen that can produce listeriosis in humans and animals. It has evolved an exceptional ability to adapt to stress conditions encountered in different environments, resulting in a ubiquitous distribution. Because some food preservation methods and disinfection protocols in food-processing environments cannot efficiently prevent contaminations, L. monocytogenes constitutes a threat to human health and a challenge to food safety. In the host, Listeria colonizes the gastrointestinal tract, crosses the intestinal barrier, and disseminates through the blood to target organs. In immunocompromised individuals, the elderly, and pregnant women, the pathogen can cross the blood-brain and placental barriers, leading to neurolisteriosis and materno-fetal listeriosis. Molecular and cell biology studies of infection have proven L. monocytogenes to be a versatile pathogen that deploys unique strategies to invade different cell types, survive and move inside the eukaryotic host cell, and spread from cell to cell. Here, we present the multifaceted Listeria life cycle from a comprehensive perspective. We discuss genetic features of pathogenic Listeria species, analyze factors involved in food contamination, and review bacterial strategies to tolerate stresses encountered both during food processing and along the host’s gastrointestinal tract. Then we dissect host–pathogen interactions underlying listerial pathogenesis in mammals from a cell biology and systemic point of view. Finally, we summarize the epidemiology, pathophysiology, and clinical features of listeriosis in humans and animals. This work aims to gather information from different fields crucial for a comprehensive understanding of the pathogenesis of L. monocytogenes.Spanish Ministry of Science and Innovation (PGC2018-096364-B-I00). JJQ was supported by the Generalitat Valenciana (GV/2018/A/183) and the Spanish Ministry of Science and Innovation (PID2019-110764RA-I00 /AEI/10.13039/501100011033). FG-dP was supported by the European Union’s Horizon 2020 Research-and-Innovation Program under Marie Sklodowska-Curie grant agreement no. 721456. JJQ was a recipient of the “Ramón y Cajal” Programme from the Spanish Ministry of Science, Innovation, and Universities (RYC-2018-024985-I). AM-G was funded by the Youth Employment Initiative from the Comunidad de Madrid. CP-G was funded by the Universidad Cardenal Herrera-CE

    Metallic Nanoparticles—friends or foes in the battle against antibiotic-Resistant Bacteria?

    Get PDF
    The rapid spread of antibiotic resistances among bacteria demands novel strategies for infection control, and metallic nanoparticles appear as promising tools because of their unique size and tunable properties that allow their antibacterial effects to be maximized. Furthermore, their diverse mechanisms of action towards multiple cell components have suggested that bacteria could not easily develop resistance against nanoparticles. However, research published over the last decade has proven that bacteria can indeed evolve stable resistance mechanisms upon continuous exposure to metallic nanoparticles. In this review, we summarize the currently known individual and collective strategies employed by bacteria to cope with metallic nanoparticles. Importantly, we also discuss the adverse side effects that bacterial exposure to nanoparticles may have on antibiotic resistance dissemination and that might constitute a challenge for the implementation of nanoparticles as antibacterial agents. Overall, studies discussed in this review point out that careful management of these very promising antimicrobials is necessary to preserve their efficacy for infection control
    corecore