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Abstract. European Union launched the RASFF portal in 1977 to ensure cross-1 
border monitoring and a quick reaction when public health risks are detected in 2 
the food chain. There are not enough resources available to guarantee a compre-3 
hensive inspection policy, but RASFF data has enormous potential as a preven-4 
tive tool. However, there are few studies of food and feed risk issues prediction 5 
and none with RASFF data. Although deep learning models are good prediction 6 
systems, it must be confirmed whether in this field they behave better than other 7 
machine learning techniques. The importance of categorical variables encoding 8 
as input for numerical models should be specially studied. Results in this paper 9 
show that deep learning with entity embedding is the best combination, with ac-10 
curacies of 86.81%, 82.31%, and 88.94% in each of the three stages of the sim-11 
plified RASFF process in which the tests were carried out. However, the random 12 
forest models with one hot encoding offer only slightly worse results, so it seems 13 
that in the quality of the results the coding has more weight than the prediction 14 
technique. Our work also demonstrates that the use of probabilistic predictions 15 
(an advantage of neural models) can also be used to optimize the number of in-16 
spections that can be carried out. 17 
 18 
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1 Introduction 21 

Friedman (2007) defines globalization as the “inexorable integration of markets, trans-22 

portation systems, and communication systems to a degree never witnessed before”. It 23 

increasingly involves more people and more economic sectors every day. The food and 24 

feed sector is perhaps one of the most affected, as the safety of food production and 25 

transport is a very sensitive issue for the consumer. The World Trade Organization1 26 

(WTO) estimates that food and agricultural products account for approximately 10% of 27 

all exports, making it a major concern for the transport industry and food safety author-28 

ities, as demonstrated by the economic impact and health risk of recent food crises. 29 

Ashworth and Mainland (1995) shows the drop in beef consumption after the outbreak 30 

of mad cow disease. Tuffs (2011) points to the need for accountability, as demonstrated 31 

by the disastrous failure to detect the origin of E. coli-contaminated cucumbers. 32 

 
1 https://data.wto.org/ 

https://data.wto.org/
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In response to the global nature of food hazards, the independent European Food 33 

Safety Authority (EFSA) was established in 2002. EFSA enforces the key political pri-34 

ority of the European Commission to establish high standards of food safety, Jukes & 35 

Jukes and Mutukumira (2003). Together with the EU Commission, the EU Member 36 

States, Iceland, Liechtenstein, and Norway are part of RASFF2, the Rapid Alert System 37 

for Food and Feed. RASFF provides authorities with an effective network to exchange 38 

information and react quickly and effectively when a health threat occurs. The network 39 

consists of contact points working at the national level who are responsible for regis-40 

tering all information in an online system called the RASFF Portal3. 41 

Health risk alerts are detected through market, food business, or border controls at 42 

each RASFF country. Each Member State is operational on a 24/7 basis, so urgent no-43 

tifications can be made at any time. Food safety authorities organize their inspection 44 

activities considering available human and financial resources. As a non-exhaustive 45 

explanation of the RASFF process reveals, a single notification involves many people, 46 

resources, and efforts. Food inspectors select suspected products to be inspected. De-47 

pending on the selected product, different tests and analyses may be carried out, each 48 

specific to a different hazard. If the product is irregular, the competent authority decides 49 

how to deal with the problem and whether it should be reported to RASFF using an 50 

online form with details of the incident.  51 

However, the number of inspections carried out is very small compared to the vol-52 

ume of the food and feed trade. It is estimated that in some cases only about 11% of the 53 

imported products can be analyzed.4 An accurate prediction of which products are most 54 

likely to pose a risk, or which contaminant is most likely to be found at any given time, 55 

can help optimize the resources available for inspections and speed up detection, as 56 

they can focus on carrying out more specific analyses. 57 

Prediction refers to the outcome of a model fitted to a training dataset when applied 58 

to unseen data. The model is an estimator that can make predictions of the future be-59 

havior of new events, basically a classification of future events among several, well 60 

determined, possibilities. A particular case of prediction is forecasting, where the model 61 

predicts a future numerical value based on the analysis of time-series data. Prediction 62 

is an inherently difficult task that, to be reliable, also requires a large amount of data, 63 

this being an additional problem to the prediction itself.  64 

The rise in recent years of artificial intelligence and especially Machine Learning 65 

(ML) offers a possibility to address this problem from a different approach. ML tech-66 

niques are mathematical models capable of identifying data patterns after being trained 67 

on a training dataset and using them to make decisions automatically when applied to 68 

fresh data. They have demonstrated their good performance in extracting patterns when 69 

the amount of data is so large that many details cannot be perceived by the human eye. 70 

A special type of ML model is the Artificial Neural Networks (ANNs), which are a 71 

simplified simulation of how certain areas of the human brain function. Among the 72 

 
2 https://ec.europa.eu/food/safety/rasff_en 
3 https://webgate.ec.europa.eu/rasff-window/portal/ 
4 https://ec.europa.eu/food/sites/food/files/safety/docs/oc_leg_imports_dpe_ms_border-checks-

results_2013.pdf 

https://ec.europa.eu/food/safety/rasff_en
https://webgate.ec.europa.eu/rasff-window/portal/
https://ec.europa.eu/food/sites/food/files/safety/docs/oc_leg_imports_dpe_ms_border-checks-results_2013.pdf
https://ec.europa.eu/food/sites/food/files/safety/docs/oc_leg_imports_dpe_ms_border-checks-results_2013.pdf
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ANNs, Deep Learning models (DL) have been a major breakthrough in recent years, 73 

offering good results in prediction problems. Deep learning is performed by deep neural 74 

networks, a subset of ANNs. They are defined as models composed of multiple pro-75 

cessing layers that learn representations of data with multiple levels of abstraction, 76 

LeCun et al (2015). 77 

Despite the relevance of predicting food safety risks, Chlebicz and Śliżewska (2018), 78 

Moura et al. (2019), and Battilani et al. (2016) show that the problem of prediction in 79 

food and feed safety has not yet been studied in depth. Few works approach the problem 80 

within the RASFF framework or use the information stored in its portal for this purpose 81 

and none of them fully exploit the huge amount of data stored there. In addition, there 82 

are no studies on which is the best predictive strategy or which of the available tech-83 

niques, whether the more classical ML or the more novel neural approaches, is more 84 

suitable for this problem. 85 

This paper presents how the use of different ML techniques can help solve the prob-86 

lem of prediction in the field of food and feed safety and thus increase the chances of 87 

targeting specific products and/or contaminants that present a higher risk at a given 88 

time. In particular, we have made a comparison between neural and non-neural ML 89 

models that have been used to predict three different issue characteristics within a sim-90 

plified RASFF workflow. First, the product category that will cause the issue so that 91 

authorities can focus on analyzing these products. Then, the hazard that will cause the 92 

problem so that resources can be allocated to the most appropriate analysis. Finally, 93 

what action can be taken to address this problem. Data availability is not a problem as 94 

we make use of the complete dataset stored in the RASFF portal since 1979. Data is 95 

downloaded automatically and periodically from the RASFF portal and pre-processed 96 

using data mining techniques to feed predictive models with properly formatted data. 97 

Our research predicts incoming alert notifications using two neural models (multi-98 

layer perceptrons and 1D convolutional neural networks) and five non-neural ML tech-99 

niques (logistic regression, decision trees, random forest, boosting trees, and support 100 

vector machines). Most machine learning algorithms (neural and non-neural) cannot 101 

work with categorical data and require all inputs and outputs to be numerical. For this 102 

reason, the categorical variables in the dataset used had to be encoded using different 103 

strategies (integer encoding, binary encoding, feature hashing, one-hot encoding, and 104 

entity embedding) that have also been evaluated in combination with the predictive 105 

models. 106 

The results show that there is a strong dependence on both the ML model and the 107 

coding strategy. Neural models with entity embedding perform best in terms of accu-108 

racy, although not all non-neural models perform in the same way. Decision trees also 109 

provide good results in combination with the one-hot encoding strategy.  110 

This paper is organized in the following sections: Section 2 briefly explains the main 111 

contributions of related works in food safety predictions and contextualizes our ap-112 

proach. Section 3 describes the RASFF data collection process and the pre-processing 113 

before use as input to the models. Section 4 describes the methods and models used in 114 

this study, including encoding techniques and neural architectures. Section 5 shows the 115 
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experimental results, including the performance of the neural models used and the com-116 

parison with the results obtained with non-neural techniques. Finally, Section 6 presents 117 

the conclusions obtained in this research study and future work. 118 

2 Background 119 

Prediction in the field of food safety has been done using both classical ML and DL 120 

techniques. Fuzzy cognitive maps are used by Birmpa et al (2015) to detect critical 121 

points in a production food chain. Wang et al. (2018) use a bayesian tool for the pre-122 

diction of foodborne diseases. Deep learning is used by Zuo et al. (2017) to predict 123 

safety in meat products. Ganguli et al. (2012) use a CNN trained with satellite pictures 124 

to predict key food security metrics while Ashqar et al. (2018) use images to detect 125 

diseases in tomato leaves. The particular use of DL techniques in different applications 126 

related to food is compiled in Zhou et al. (2019). In particular, it should be highlighted 127 

Song et al. (2017) which apply autoencoders to predict morbidity in gastrointestinal 128 

infectious diseases by using different types of food and their contaminants. These 129 

works, however, do not rely on the information contained in the RASFF portal nor do 130 

they consider the steps followed in the RASFF protocols, as we do. 131 

RASFF data has already been used in several non-prediction works. Nepusz et al. 132 

(2009) use Network Analysis for analysis of food alert patterns from 2003 to 2008 con-133 

cluding that China, Iran, and Turkey are the countries with the most problems. Petroczi 134 

et al. (2010) also use network analysis with food notifications from 2000 to 2009, the 135 

main finding reports that countries with important ports are a good method to preserve 136 

food safety. The rest of the papers in this paragraph are quantitative analyses using 137 

statistical methods. Luth et al. (2019) make a statistical analysis of issues with Listeria 138 

monocytogenes that recommends better communication channels between food safety 139 

and public health authorities. D.’Amico et al. (2018) work only with data related to 140 

seafood products from 2011 to 2015, in most of the cases products were imported from 141 

Spain and Italy finding heavy metals and pathogenic microorganisms. Taylor et al. 142 

(2013) measure how European Union Member States contribute to the RASFF, it con-143 

cludes that there is a wide range of food policies comparing the different countries.  144 

Pigłowski (2019) analyzes only food issues related to pathogenic and non-pathogenic 145 

microorganisms, results recommend cooperation with RASFF to improve public health 146 

law that will reduce outbreaks related to microorganisms. Stanciu (2019) uses RASFF 147 

issues with Romanian products, concluding that authorities should worry due to the 148 

large number of exports withdrawn by the European Union. Kleter et al. (2009) work 149 

only for four years from 2003 to 2007 with the whole RASFF whose results suggest 150 

using complementary information as safety assessments, risk management measures, 151 

background hazards, or surveillance patterns. In Alshannaq and Yu (2021), products 152 

issued with mycotoxins in the US from 2010 to 2019 are analyzed, it recommends the 153 

implementation of a mandatory and enforceable legal framework to avoid nut trees be-154 

ing contaminated by aflatoxins. Taghouti et al. (2015) analyze data from the Mediter-155 

ranean Partner Countries to study if previous notifications affect the actual ones. A 156 

study of contaminated dairy products from the last 20 years is made in Postolache et al. 157 
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(2020) where the results conclude that cheese products with microbial contaminants are 158 

the biggest hazard. The analysis in Leuschner et al. (2013) work with data concerning 159 

histamine concentrations establishes a link between this hazard and adverse effects on 160 

human health.  Finally, Kowalska and Manning (2020),  measure the importance of 161 

interpreting RASFF data to take decisions, demonstrating the EU members act in dif-162 

ferent ways when reporting issues.  163 

Although these works make use of RASFF data, none of them make predictions or 164 

use ML techniques nor do they use the whole dataset provided by the RASFF portal. 165 

The only reference found so far related to our work is Bouzembrak and Marvin (2015), 166 

using RASFF data to predict a particular feature of health warnings applying Bayesian 167 

networks. However, our work presents a comparison between neural and non-neural 168 

techniques. We report an efficient DL approach to predict a set of features in different 169 

cases and create a training dataset using all the historical data in the RASFF. 170 

3 Dataset 171 

The predictive capacity of an ML model is highly dependent on the quality and quan-172 

tity of training data. Therefore, the first step for this research is the acquisition and 173 

adequate pre-processing of raw data to obtain an appropriate training dataset. 174 

3.1 Data source 175 

Raw data were downloaded from the RASFF database, which has been in use since 176 

1979. At the moment of the research, a total of 56,385 records were stored, each one 177 

corresponding to an alert notified by a Member State. Since the RASFF portal only 178 

allows downloading of the latest 5,000 records, in a human-readable format which is 179 

not suitable for digital processing, we used web scraping techniques that generate struc-180 

tured data based on the unstructured data available on the website, Saurkar et al. (2018). 181 

We develop a web scraper in a Python script that uses different libraries such as 182 

Selenium5, to download information; Time6, to avoid a timeout that causes the inter-183 

ruption of the script and CSV module7, to read and write CSV files. The output of the 184 

script is a CSV file that contains all the historical records of a certain time interval that 185 

can be updated at any time. Each row corresponds to a registered alert and each column 186 

to a feature of that alert. All the features of the 56,385 alerts were scraped but only the 187 

characteristics relevant a priori to this study were stored. All except date and subject 188 

correspond to categorical variables written in English. Table 1 contains a brief descrip-189 

tion of each feature and its possible values. 190 

 191 

 
5 https://selenium-python.readthedocs.io/index.html 
6 https://docs.python.org/2/library/time.html 
7 https://docs.python.org/3/library/csv.html 

https://selenium-python.readthedocs.io/index.html
https://docs.python.org/2/library/time.html
https://docs.python.org/3/library/csv.html
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Table 1. Description and values for the features downloaded from RASFF records. 192 

Once the dataset was downloaded and stored, minor pre-processing was required to 193 

ensure the format integrity and correctness and to avoid errors when encoding the var-194 

iables. Several Python scripts removed duplicates or characters that could cause an er-195 

ror, while others replaced empty strings and NaN values with a blank value. The last 196 

script format and renamed categories are written differently when, for example, the 197 

value has been written with or without capital letters or the name has changed over the 198 

four decades of RASFF’s operation. Classical Python libraries like pandas8 or 199 

NumPy9were used for this pre-processing. 200 

3.2 Training Dataset 201 

Once we have a cleaned and formatted dataset, the next step is to select the period 202 

over which we are going to train the models. This is done by analyzing the distribution 203 

of data over the years. Scraped data has been plotted chronologically with Matplotlib10. 204 

As can be seen in Fig. 1, 50,416 records out of 56,385 occurred between 2004 and 2019 205 

at a rate of about 3,000 food records per year. This represents 88.93% of the total so 206 

that before 2004 the number of issues was low (about 100 records per year in the period 207 

[1979-1997] and 500 in the period [1998-2003]). This difference of incidents per year 208 

can lead to biases in the predictions and these residual records can cause more incon-209 

veniences than benefits when training the models. For this reason, the final dataset will 210 

only contain 50,416 records from 2004 to 2019. 211 

Fig. 1. Records per year registered in RASFF. 212 

However, due to the way ML/DL models are trained, they can overfit. The model 213 

overfits if it maximizes the model's performance on the training set and performs poorly 214 

on the unseen data. The model then begins to memorize the training data rather than 215 

learning to generalize from it. A common practice to avoid this behavior is to split the 216 

dataset into three subsets and keep one part as a "validation set", on which the training 217 

performance is measured, and another as a "test set", on which a final evaluation is 218 

performed. This double division aims to prevent the model to overfit to the validation 219 

set if the hyperparameters are excessively modified in search of optimal performance. 220 

In this case, the evaluation metrics would not represent the quality of the generalization. 221 

Training is therefore carried out on the training set, after which an evaluation is per-222 

formed on the validation set. When the experiment appears to be successful, a final 223 

evaluation is done on the test set. 224 

The experiments conducted for this work used data from 2004 to 2018 as the training 225 

and validation set (with a proportion of 80-20% of records) while we have preserved 226 

2019 data for testing. This decision was based on the time series and annual seasonality 227 

of food and feed alerts. The testing instances were not seen by the models during the 228 

 
8 https://pandas.pydata.org/ 
9 https://numpy.org/ 
10 https://matplotlib.org/ 

https://pandas.pydata.org/
https://numpy.org/
https://matplotlib.org/
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training stage and are entirely new to them. By dividing the available data into three 229 

sets, the number of samples that can be used is drastically reduced and the results may 230 

depend on a particular random choice for the training/validation sets. To avoid this 231 

problem k-fold cross-validation has been used. The training set is divided into k smaller 232 

sets or "folds". Then a loop is carried out for each of the k folds: the model is trained 233 

using k-1 folds as training data and validated (measured its performance) with the re-234 

maining fold. The performance measure reported by the cross-validation is the average 235 

of the values calculated for the whole loop. For our experiments, we have used a value 236 

of k = 5, where each fold consists of 9,525 data. Table 2 shows the number of records 237 

in each dataset division. 238 

Table 2. Number of records of each dataset used in the experiments. 239 

4 Methods 240 

4.1 Encoding of categorical variables.  241 

Most of the machine learning algorithms cannot work with categorical data. They re-242 

quire all inputs and outputs to be numerical. For this reason, all variables in the dataset 243 

must be encoded, that is, converted into numbers that preserve as best as possible the 244 

information contained in the dataset.  The choice of encoding type is directly related to 245 

the accuracy of the model. In this case, this impact can be even bigger as all the varia-246 

bles in the dataset are categorical. Therefore, the models proposed in this paper are the 247 

sum of the encoding and the machine learning models. The different types of proposed 248 

encodings, based on  Hancock and Khoshgoftaar (2020), are presented below. 249 

Integer encoding. Every category from a categorical variable is transformed into inte-250 

gers. It gives number 1 to the first category, 2 to the second, and so on, till n which is 251 

the number of different values that the categorical variable can take.  252 

Feature hashing. This method creates a hash table using a function with the same name. 253 

It transforms input elements or strings of any length into output numerical code of a 254 

fixed length determined by a function. 255 

One hot encoding. Each value of the categorical variable is represented by a vector of 256 

size n, where n is the number of possible values of the variable. In each vector, all 257 

positions will contain 0, except the one representing the coded category, which will 258 

contain 1. 259 

Entity Embedding of Categorical Variables. Guo and Berkhahn (2016),  propose this 260 

method that reduces the use of memory and accelerates the process of model formation 261 

compared to one-hot encoding.  262 

For multi-dimensional spaces of categorical features, this method automatically 263 

maps closer categories with similar effects to the target output, so helping neural net-264 

works to solve the problem. In other words, entity embeddings are used to map catego-265 

ries into a continuously distributed vector in a semantic space. In this space, similar 266 
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categories are closer. What is even more interesting is that not only the distance be-267 

tween categories are meaningful but also the direction of the vectors. This allows find-268 

ing the intrinsic properties of categorical variables. 269 

This coding is done using embedding layers. Each categorical variable is an input to 270 

the model and needs a different inlay layer. That is, the relationships sought are the 271 

relationships that exist between the category values of each categorical variable, not the 272 

relationships that exist between variables. The output dimension of each of these layers 273 

is a hyperparameter that will be modified during the training process considering the 274 

expected output value of the training data. Fig. 2 shows how embedding layers are con-275 

nected to the neural model. 276 

 277 

Fig. 2. Example of a model with embedding layers. 278 

The operation of an embedding layer can be understood as a table in which each 279 

different input (each category) is associated with an embedding vector of a pre-estab-280 

lished dimension. Therefore, each category has a unique vector associated with it. The 281 

values of these vectors are randomly initialized and modified as if they were the weights 282 

of a neural network, depending on the final error made by the prediction.  The repre-283 

sentation of categories made by a model that solves a specific problem is expected to 284 

be one that retains only the features and relationships relevant to solving that specific 285 

problem. 286 

The output vectors of each of the embedding layers are concatenated to each other 287 

representing the input data, being the union of the codifications of all the variables. This 288 

vector will, therefore, be fed into the model that follows the coding. 289 

4.2 Neural models.  290 

The experiments described in this paper apply deep neural network models to RASFF 291 

portal data to predict three different issues’ characteristics, at different stages of a sim-292 

plified RASFF workflow. Three different predictors have been developed, each one 293 

built with the required encodings and a particular neural architecture. Although several 294 

neural models have been tested, the best results have been obtained with Multilayer 295 

Perceptrons (MLP) and 1D Convolutional Networks (Conv1D). 296 

Multilayer Perceptron (MLP) is a feedforward supervised neural network model. It 297 

consists of an input layer, an output layer, and an arbitrary number of hidden layers. 298 

The basic MLP has a single hidden layer. Neurons use nonlinear activation functions, 299 

either sigmoid, hyperbolic tangent, or Rectified Linear Unit (ReLU). Learning is car-300 

ried out through backpropagation using the generalized delta rule to update the weights 301 

matrices. 302 

1D Convolutional Neural Network (Conv1D) is a type of feedforward supervised deep 303 

neural network that can model high-level data abstractions using hierarchical architec-304 

tures. They learn input-output relationships based on convolution operations over a 305 

one-dimensional array. Each convolutional layer extracts hierarchically and incremen-306 

tally some characteristics input array. 307 
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Since the project deals with categorical variables, output layers for both MLP and 308 

Conv1D models are built with as many neurons as categories must be predicted. The 309 

activation function for these output layers is Softmax, which produces a value between 310 

0 and 1 for each output neuron. That value is the probability that this neuron represents 311 

the correct output of the network. The sum of the outputs of all the neurons in the output 312 

layer is equal to 1. The loss function selected was categorical cross-entropy since the 313 

problem can be defined as a  label-categorization task. All models have been developed 314 

using Keras11, a high-level API built on top of TensorFlow12, the Google open-source 315 

library for machine learning and deep neural networks. 316 

 317 

Optimization of model hyperparameters. The behavior of deep neural networks is 318 

controlled by different hyperparameters, their selection being based on a trial and error 319 

basis. This is a time-consuming task, so a method called grid search has been being 320 

used to find an optimal combination. Grid search is a method that combines different 321 

values from a set of hyperparameters, obtaining the model with the best accuracy,  322 

Bergstra et al. (2011). 323 

4.3 Non-neural models.  324 

As part of the evaluation of the proposed models, some classical ML models have been 325 

used. They have also been used with the different proposed encodings except for cate-326 

gorical embeddings as they can only be used with neural models. These models have 327 

been developed with the help of Python library scikit-learn13 which is used for Data 328 

Mining. 329 

Logistic regression. It is a technique that belongs to what is called linear generalized 330 

models. The main characteristic of this model is that it can predict a qualitative variable 331 

based on several predictive ones. According to Park (2013), it analyzes the relationship 332 

between multiple independent variables and a categorical dependent variable. 333 

Decision trees. This model consists of predicting the target variable by learning simple 334 

decision rules inferred from the data features. It is defined in Mashat et al. (2012) as a 335 

classifier that uses the values of the attributes to create a recursive partition based on 336 

the input data. It builds logic diagrams in the form of hierarchical trees. They represent 337 

the categorization of the data under a series of conditions applied in the form of suc-338 

cessive trees. In the tree, each node represents a test or decision on an attribute, and 339 

each branch the result of the test, and each node finishes in a class label. 340 

Random forest. Introduced by Breiman (2011), it is a method based on decision trees. 341 

The technique consists of combining them and averaging the models improving the 342 

results. Compared with decision trees, this technique usually reduces overfitting which 343 

is a problem in them.  344 

Boosting trees. This technique is also based on decision trees and is defined in Anghel 345 

et al. (2018) as an algorithm that uses a set of decision trees and builds a learner by 346 

 
11 https://keras.io/ 
12 https://www.tensorflow.org/ 
13 https://scikit-learn.org/stable/ 

https://keras.io/
https://www.tensorflow.org/
https://scikit-learn.org/stable/
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fitting the gradients of the residuals. It makes use of the different techniques that opti-347 

mize and improve gradient descent over the loss function. 348 

Support Vector Machine (SVM). The actual version of SVM was proposed by Boser et 349 

al. (1992). It can be seen as a classifier where instances are distributed through an n-350 

dimensional space. The objective of the algorithm is to find a hyperplane that divides 351 

individuals into different classes making the separation between them as wide as pos-352 

sible. In this case, we have performed two versions of SVM for classification and an-353 

other for regression (SVR). 354 

4.4 Food and feed prediction system.  355 

To maximize the results of this work concerning the use of different ML techniques for 356 

food safety risk prediction, we have designed a simplified RASFF model. This model 357 

captures the main steps and actors involved in the workflow and decision-making pro-358 

cess. Using this model and following extensive research, we concluded that RASFF 359 

can take advantage of this work in three key points, defined as the three stages of the 360 

workflow.  361 

• Prediction of product category at the time officials at the border or in a market 362 

decide which products might be contaminated. A series of products having 363 

different characteristics arrive from different countries. Due to the limited 364 

amount of human resources, not all the products can be analyzed. By predict-365 

ing which products have more possibilities of being contaminated, they can 366 

focus only on taking samples of a few products. 367 

• Prediction of hazard category in the laboratory, once the product to be ana-368 

lyzed has been selected. A single product can present multiple hazards, each 369 

one requiring a different analysis approach. At this point, there is an interest 370 

in predicting the hazard that can be found in the product, so the usage of the 371 

laboratory equipment is optimized. 372 

• Action to be taken once both the product and the hazard are detected. This is 373 

a decision-making process   374 

As the use cases are sequential, the output of one stage will be part of the inputs for 375 

the next one. Table 1, lists input features for each stage, and the range of different values 376 

that the predicted variable can take. Input data of Stage 1 are, a priori, known by the 377 

EU workers when the goods arrive at a country. 378 

Table 3. Inputs and outputs of the models at different stages. 379 

5 Results 380 

Selection of the neural model. Two models (a multilayer perceptron and a 1D convo-381 

lutional neural network) have been developed and trained with a combination of clas-382 

sical encodings and entity embedding of categorical variables.  383 

Neural architectures have been designed and tuned using iterative grid search tech-384 

niques applied to the two possible models (MLP and Conv1D) with one hot encoding 385 
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(standard coding). A first iteration was used to select the number of neurons, hidden 386 

layers, and the activation function for each layer. From these results, the dropout be-387 

tween different hidden layers was fixed. In a new iteration, the number of epochs and 388 

optimizers were selected. The last hyperparameter that was set was the optimal learning 389 

rate. For the Conv1D model, the same process was followed except in the first iteration, 390 

where the number of neurons is changed for the number of filters, kernel sizes, and 391 

Maxpooling. Tables 4 and 5 show the hyperparameters that have been tested and their 392 

different values for the MLP and the Conv1D, respectively. The final configuration of 393 

the three models can be seen in Appendix Fig. 1, 2, and 3. 394 

Table 4. Configuration of grid search for MLP (hyperparameters and values). 395 

Table 5. Configuration of grid search for Conv1D (hyperparameters and values). 396 

Tables 6, 7, and 8 show the accuracy obtained on the validation set at each stage 397 

with both deep learning models when input data was coded with one hot encoding (the 398 

best results among classical encodings) and entity embeddings of categorical variables. 399 

The experiments have been carried out five times each, starting each time with ran-400 

domly generated weight matrices. The results are the average and standard deviation of 401 

the five runs thus avoiding deviations from the mean that could be obtained with a 402 

single experiment. The accuracy is measured in the output layer of each model as the 403 

number of times the most likely category matches the correct one divided by the total 404 

number of input values. 405 

Best accuracies in stages 1 and 3 are obtained with an MLP with entity embedding 406 

of categorical values. For stage 2, the best result is achieved with the same encoding 407 

but using a Conv1D. 408 

Table 6. Accuracy of the different neural models. Stage 1. 409 

Table 7. Accuracy of the different neural models. Stage 2. 410 

Table 8. Accuracy of the different neural models. Stage 3. 411 

The stage 1 model consists of four embedding layers of size 6, 16, 9, and 50 that are 412 

concatenated with an MLP with three hidden layers of 2048, 1024, and 512 neurons. 413 

The activation function for these layers is ReLU which represents a nearly linear func-414 

tion and therefore preserves the properties of linear models that made them easy to 415 

optimize, with the gradient descent method, Goodfellow et al. (2018). The output layer 416 

has 38 neurons that correspond to the product categories. Error is measured with the 417 

categorical cross-entropy and Adam has been used as the optimizer. 418 

The stage 2 model is made up of one more embedding layer of 19 neurons. These 419 

layers are concatenated with a Conv1D of two-layer of 512 and 256 neurons. The num-420 

ber of the convolutional filters is 128 and 256 with sizes 4 and 3 respectively.  The 421 

output layer has 35 neurons (number of hazard categories). 422 

Finally, the model at stage 3 is similar to model 1 with two differences: two extra 423 

embedding layers with 19 and 18 neurons and an output layer composed of 24 neurons 424 

that correspond to the different actions to be taken. 425 
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 426 

Evaluation against non-neural models. The proposed neural architectures have per-427 

formed quite well. However, they need to be validated against classical ML models of 428 

non-neural nature that we have previously defined: logistic regression, decision trees, 429 

random forest, boosted trees, SVM, and SVR. These architectures alongside the differ-430 

ent proposed encodings have been combined creating new models plus grid search tech-431 

nique to be compared with the chosen neural architectures from the previous subsec-432 

tion. Results of accuracy using validation set can be seen in Tables 9, 10, and 11, again 433 

one table for each stage. In the case of SVR, we have used R2 as evaluation metric 434 

which is depecited in the following Equation. 435 

 436 

R2 =  1-  
∑ (𝑦𝑖−𝑦̂𝑖)2

𝑖

∑ (𝑦𝑖−𝑦̅𝑖)2
𝑖

 (1) 437 

 438 

Table 9. Accuracy comparison of neural and non-neural models with different encoding strate-439 
gies in stage 1. 440 

From all the combinations of non-neural architectures, decision trees with one-hot 441 

encoding are the one that performs best. It obtains an accuracy of 81.93%. MLP with 442 

categorical embedding performs better with 86.81% of accuracy. 443 

Table 10. Accuracy comparison of neural and non-neural models with different encoding strat-444 
egies in stage 2. 445 

Regarding Table 10, the best non-neural model is the combination of decision trees 446 

with one hot encoding with around 80.89% of accuracy. The neural architecture per-447 

forms slightly better with an 82.31% 448 

Table 11. Accuracy comparison of neural and non-neural models with different encoding strat-449 
egies in stage 3. 450 

At stage 3, the best non-neural results are provided again by decision trees and one 451 

hot encoding (around 81% of accuracy). In this case, the neural architecture works 452 

much better, improving the results by 7.04%. 453 

 454 

Probabilistic predictions. Analyzing the results from the previous tables, we can con-455 

clude that the differences between neural and non-neural models are not significant. 456 

What is good about the neural models is that they provide probabilistic predictions. In 457 

this case, the output in all three neural models is a vector whose size is the number of 458 

neurons in the output layer. The value in each position varies between 0.0 and 1.0, 459 

adding a total of 1.0. This is interpreted as the probability that this position occurs ex-460 

pressed in times one. 461 

Non-neural models make a single bet on what the expected category will be. Neural 462 

models with a probabilistic outcome can be used to narrow the scope of products, haz-463 

ards, or actions to a small number of options (not just one). This broadens the scope of 464 
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the search but still guarantees a higher success rate. Following this approach, three dif-465 

ferent predictions have been made: Top1, Top2, and Top3. 466 

• Top1. It compares the category to which the network gives the greatest prob-467 

ability with the real one. It is the accuracy used to measure the models in Ta-468 

bles 7, 8, and 9. 469 

• Top2. In this case, the accuracy is calculated by checking whether the actual 470 

category is between the 2 most probable categories according to the neural 471 

model and adding both accuracies. 472 

• Top3. The same as Top2 but checking if the actual category is among the 3 473 

categories to which the network has given the most probabilities and adding 474 

the accuracies in the three categories. 475 

Table 12 summarize the results obtained at each stage with the same models but 476 

calculating accuracies as described above. Top3 models logically improve accuracy. 477 

Table 12. The accuracies of the three models depending on the type of prediction. 478 

Looking at the results from the models in Table 12, the probabilistic predictions taking 479 

into account Top2 and Top3 categories obtain much better results compared with the 480 

non-neural models. 481 

 482 

Evaluation of the prediction. Finally, all selected non-neural and neural models have 483 

been evaluated against the test dataset, previously separated from training/validation 484 

data. For that purpose, all 2,789 instances from the 2019 dataset, that have never been 485 

fed into the model, have been used. In order to measure how well the models are per-486 

forming, we have also obtained other metrics like specificity and sensitivity. Specificity 487 

measures the ratio between the number of true negatives and the total of those predicted 488 

as true negatives and false positives. Sensitivity is the same as specificity but takes into 489 

account false negatives instead of false positives. Both metrics are depicted in the fol-490 

lowing Equations. 491 

 492 

Specificity = 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
     (2) 493 

 494 

 495 

Sensitivity = 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
      (3) 496 

 497 

Table 13 compiles the information related to specificity and sensitivity for the best non-498 

neural models in Tables 9 to 11. These results have been obtained with the test set. 499 

Table 13. Different test metrics for the best non-neural model. 500 

In the case of neural models, the prediction has been carried out for the three stages and 501 

accuracy has been calculated regarding probabilistic predictions: Top1, Top2, and 502 

Top3. The chosen architectures correspond to the best performances in Tables 6 to 8. 503 

This kind of prediction will improve the results and is particular to the neural models, 504 

thus these results can not be obtained with non-neural techniques. All this information 505 
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is summarized in Table 14. In the case of Top1, apart from accuracy, we have provided 506 

sensitivity and specificity calculated as described before. 507 

Table 14. Different test metrics for each neural model. 508 

6 Conclusions and future works 509 

The experiments described in this document provide a detailed comparison of the pre-510 

diction of food and feed risk issues obtained using different machine learning models. 511 

These models are applied at three specific stages, each of them yielding an intermediate 512 

result in the workflow of a simplified RASFF system. When all models are sequentially 513 

applied in a pipeline, risk product, hazard to be found in the product and preventive 514 

action can be predicted. The data has been obtained from RASFF using a scrapper spe-515 

cifically developed to obtain all the information stored in the RASFF portal. Models 516 

are both neural and non-neural machine learning methods combined with different cod-517 

ing strategies for categorical variables in the dataset. 518 

The most suitable neural model for each stage of the workflow has been selected 519 

from two possible architectures (Multilayer Perceptrons and Convolutional Neural Net-520 

works). After a thorough hyperparameter tuning process, the selected MLP and 521 

1DConv architectures have been trained and validated in all three stages. In two cases 522 

(stages 1 and 3) neural model stands out clearly over the other. In the worse case, the 523 

differences are about 1.42%  (stage 2). 524 

A first and straightforward conclusion is that the encoding strategy plays a prominent 525 

role in the quality of the results. More elaborate encoding strategies yield better results, 526 

regardless of the model. In all stages, the best results for all non-neural models are 527 

obtained when using one-hot encoding. For neural models, the best results are obtained 528 

with the entity embedding of categorical variables, followed by one-hot encoding. En-529 

tity embedding cannot be used with the other models, since the output dimension of 530 

each embedded layer is modified during the training process of the neural model to 531 

which it is associated, in much the same way as the weight matrix is optimized. The 532 

use of entity embeddings made a clear advantage of the neural model over non-neural 533 

ones. 534 

Comparing neural and non-neural models at the validation stage, each with the best 535 

encoding strategy, the study shows that the use of entity embeddings plus neural models 536 

gives better results in all cases. The accuracy results of the neural models versus the 537 

average accuracy of the non-neural models clearly shows a clear advantage in favor of 538 

the MLP and 1DConv architectures. In addition, they have also been tested on data 539 

never used in the training/validation phase (2,789 instances of the 2019 dataset). A 540 

comparison of the results depicted in Tables 13 and 14 show that the neural models are 541 

robust, as the accuracies obtained are quite similar, without a large deviation in the test 542 

trials compared to the results obtained in the validation phase. 543 

However, if we compare with the accuracy at the validation stage of the best non-544 

neural model, which has been random forest and decision trees depending on the stages, 545 
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the advantage of the MLP/1DConv architectures are significant in some cases, perform-546 

ing much better than non-neural models with One Hot Encoding. 547 

This scenario improves the results when considering, for neural models, not a categor-548 

ical prediction but a probabilistic prediction. As the output of the neural architectures 549 

is a vector with as many values as categories must be predicted at each stage, the accu-550 

racy of each model has been validated in three different scenarios: a prediction based 551 

on the most likely category (Top1 prediction) and two predictions where accuracy is 552 

measured on the two (or three) most likely categories. Their performance is improved 553 

when the second and the third most probable prediction (Top2 and Top 3 predictions) 554 

are also considered. This is a fundamental advantage since these probabilistic predic-555 

tions (which cannot be obtained with a non-neural model) have enormous potential as 556 

a preventive tool to optimize resources for the actors involved in food security. To 557 

check the accuracy of the models, we can take into account the specificity and sensitiv-558 

ity. From these results, we can conclude that accuracy values make sense because spec-559 

ificity obtains greater results. This is because this metric takes into account all the false 560 

positives. So, the models are good at minimizing the prediction of contaminated prod-561 

ucts that are really healthy for consumers. This is very interesting as the aim of this 562 

research is to optimize the resources. 563 

As future works, some ideas can be highlighted. First, the work could benefit from 564 

using the seasonal nature of the products in the RASFF alerts. This means, forecasting 565 

food and feed problems through a time series approach. For example, we can make a 566 

weekly or monthly count of issues by type of food. From this, it is possible to predict 567 

when and how many instances of each type will occur at a given time. This will reflect 568 

the importance of the seasonality and, also, the hemisphere from where the products 569 

are imported. Second, we could use the variable summary of each record. This variable 570 

consists of a text written by the different authorities. The objective would be to obtain 571 

helpful information using Natural Language Processing (NLP) techniques. Third, we 572 

can understand RASFF as a big network where countries are connected to each other 573 

taking into account the products they are trading. So, based on graph theory techniques 574 

like Social Network Analysis (SNA), we can make a structural analysis of this network. 575 

We can find sensitive routes, countries that have food policies impacting the European 576 

Union, or hubs of countries whose border controls are finding a lot of contaminated 577 

products. Finally, as we can model the different registered issues as a graph, we can 578 

take advantage of the newly Graph Convolutional Neural Networks (GCNN) to train a 579 

predictive model of sensitive routes. 580 
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Fig. 1. Model for stage 1. 
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Fig. 2. Model for stage 2. 
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Fig. 3. Model for stage 3.
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