929 research outputs found
Intravascular Stapler for âOpenâ Aortic Surgery: Preliminary Results
NumeraciĂłn errĂłnea en el original
The Effects of Thrombus, Thrombectomy and Thrombolysis on Endothelial Function
AbstractObjective: this study was undertaken to examine and compare the effects of thrombus, thrombectomy, and thrombolysis on endothelial function as measured by endothelium-dependent vasorelaxation (EDR). Methods: adult, male New Zealand white rabbits underwent ligation of the left common iliac to femoral artery to induce thrombosis and were then randomly assigned to one of five groups, n=6 in each. Group A consisted of ligation and thrombosis for 4 h. Group B underwent similar ligation for 4 h, but without intraluminal thrombus present. Following 4 h of ligation and thrombosis, Group C underwent thrombectomy while group D was treated with urokinase (UK), 4000 U/min for 30 min. Group E underwent UK infusion alone. The right external iliac artery served as control vessel in each group. All arteries were removed and endothelial function was determined by measuring EDR. Results: the presence of thrombus reduced EDR by 50% (group A) compared to control. Vessels with interrupted flow, but not exposed to thrombus, retained normal EDR (group B). Thrombectomy decreased EDR significantly (group C) compared to thrombolysis (group D) and control. UK did not significantly alter EDR (groups D, E).Conclusions: exposure of endothelium to thrombus significantly decreases EDR. EDR was not affected by interruption of blood flow in the absence of thrombus. Thrombectomy appeared to cause a further additive insult to the endothelium. In contrast, thrombolysis with UK preserved residual endothelial function. These data suggest that it is important to differentiate the effects of thrombus on endothelium from effects due to thrombectomy or thrombolysis when evaluating treatment modalities for arterial thrombosis
Multiscale studies of the three-dimensional dayside X-line
AbstractWe review recent experience from the Cluster, Double Star, and THEMIS missions for lessons that apply to the upcoming Magnetospheric Multiscale Mission (MMS) being developed for launch in 2014. On global scales, simulation and statistical studies lead to mean configurations of dayside reconnection, implying specific relative alignments of the inflow magnetic fields and X-line, with implications for MMS operations designed to maximize the number of close encounters with the diffusion region. At intermediate MHD-to-ion scales, reconstruction of features created by one or two X-lines have developed to the point where data from a cluster of spacecraft can determine their temporal trends and the approximate three-dimensional X-line structure. Recent petascale particle-in-cell (PIC) simulations of reconnection encompass three spatial dimensions with excellent resolution, and make striking predictions of electron scale physics that creates complex interacting flux ropes under component reconnection. High time resolution measurements from MMS will determine the detailed electron scale kinetics embedded within the global and MHDâion scale contexts. These developments will lead to the refinement of our three-dimensional multiscale picture of reconnection, yielding improved understanding of the global, MHD, and local physics controlling the onset or quenching, variability, and mean rate of reconnection. This in turn will enable improved predictability of the structural features created by transient reconnection, and their space weather consequences
Universal neural field computation
Turing machines and G\"odel numbers are important pillars of the theory of
computation. Thus, any computational architecture needs to show how it could
relate to Turing machines and how stable implementations of Turing computation
are possible. In this chapter, we implement universal Turing computation in a
neural field environment. To this end, we employ the canonical symbologram
representation of a Turing machine obtained from a G\"odel encoding of its
symbolic repertoire and generalized shifts. The resulting nonlinear dynamical
automaton (NDA) is a piecewise affine-linear map acting on the unit square that
is partitioned into rectangular domains. Instead of looking at point dynamics
in phase space, we then consider functional dynamics of probability
distributions functions (p.d.f.s) over phase space. This is generally described
by a Frobenius-Perron integral transformation that can be regarded as a neural
field equation over the unit square as feature space of a dynamic field theory
(DFT). Solving the Frobenius-Perron equation yields that uniform p.d.f.s with
rectangular support are mapped onto uniform p.d.f.s with rectangular support,
again. We call the resulting representation \emph{dynamic field automaton}.Comment: 21 pages; 6 figures. arXiv admin note: text overlap with
arXiv:1204.546
Complex Systems Science and Community-Based Research
There is an abundance of community-based research literature that incorporates complex system science concepts and techniques. However, currently there is a gap in how these concepts and techniques are being used, and, more broadly, how these two fields complement one another. The debate on how complex systems science meaningfully bolsters the deployment of community-based research has not yet reached consensus, therefore, we present a protocol for a new scoping review that will identify characteristics at the intersection of community-based research and complex systems science. This knowledge will enhance the understanding of how complex systems science, a quickly evolving field, is being utilized in community-based research and practice
Assessment of groundwater discharges into West Neck Bay, New York, via natural tracers
Author Posting. © Elsevier B.V., 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Continental Shelf Research 29 (2006): 1971-1983, doi:10.1016/j.csr.2006.07.011.A field experiment to compare methods of assessing submarine groundwater discharge (SGD) was held on Shelter Island, NY, in May 2002. We evaluated the use of radon, radium isotopes, and methane to assess SGD rates and dynamics from a glacial aquifer in the coastal zone. Fluxes of radon across the sediment-water interface were calculated from changes in measured surface water inventories following evaluation and correction for tidal effects, atmospheric evasion, and mixing with offshore waters. These fluxes were then converted to SGD rates using the measured radon concentration in the groundwater. We used the short-lived radium isotopes to calculate a horizontal mixing coefficient to assess radon loss by mixing between nearshore and offshore waters. We also made an independent calculation of SGD using the Ra-derived mixing coefficient and the long-lived 226Ra concentration gradient in the bay. Seepage rates were calculated to range between 0 and 34 cm.day-1 using the radon measurements and 15 cm.day-1 as indicated by the radium isotopes. The radiotracer results were consistent and comparable to SGD rates measured directly with vented benthic chambers (seepage meters) deployed during this experiment. These meters indicated rates between 2 and 200 cm.day-1 depending on their location. Both the calculated radon fluxes and rates measured directly by the automated seepage meters revealed a clear reproducible pattern of higher fluxes during low tides. Considering that the two techniques are completely independent, the agreement in the SGD dynamics is significant. Methane concentration in groundwater was very low (~30 nM) and not suitable as SGD tracer at this study site.The SGD intercomparison experiment was partially funded by SCOR, LOICZ, and UNESCO (IOC and IHP). W. C. Burnett acknowledges support from CICEET (Grant# 1368-810-41) and ONR (Grant# 1368-769-27). J. P. Chanton acknowledges support from Seagrant (R\C-E-44). The WHOI researchers acknowledge funding from CICEET (#NA07OR0351, NA17OZ2507)
Operadic formulation of topological vertex algebras and Gerstenhaber or Batalin-Vilkovisky algebras
We give the operadic formulation of (weak, strong) topological vertex
algebras, which are variants of topological vertex operator algebras studied
recently by Lian and Zuckerman. As an application, we obtain a conceptual and
geometric construction of the Batalin-Vilkovisky algebraic structure (or the
Gerstenhaber algebra structure) on the cohomology of a topological vertex
algebra (or of a weak topological vertex algebra) by combining this operadic
formulation with a theorem of Getzler (or of Cohen) which formulates
Batalin-Vilkovisky algebras (or Gerstenhaber algebras) in terms of the homology
of the framed little disk operad (or of the little disk operad).Comment: 42 page
Isotope tracing of submarine groundwater discharge offshore Ubatuba, Brazil : results of the IAEAâUNESCO SGD project
Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Journal of Environmental Radioactivity 99 (2008): 1596-1610, doi:10.1016/j.jenvrad.2008.06.010.Results of groundwater and seawater analyses for radioactive (3H, 222Rn, 223Ra, 224Ra, 226Ra, 228Ra) and stable (2H, 18O)
isotopes are presented together with in situ spatial mapping and time-series 222Rn measurements in seawater, direct seepage
measurements using manual and automated seepage meters, pore water investigations using different tracers and piezometric
techniques, and geoelectric surveys probing the coast. This study represents first time that such a new complex arsenal of radioactive
and non-radioactive tracer techniques and geophysical methods have been used for simultaneous submarine groundwater discharge
(SGD) investigations. Large fluctuations of SGD fluxes were observed at sites situated only a few meters apart (from 0 cm d-1 to 360
cm d-1; the unit represents cm3/cm2/day), as well as during a few hours (from 0 cm d-1 to 110 cm d-1), strongly depending on the tidal
fluctuations. The average SGD flux estimated from continuous 222Rn measurements is 17±10 cm d-1. Integrated coastal SGD flux
estimated for the Ubatuba coast using radium isotopes is about 7x103 m3 d-1 per km of the coast. The isotopic composition (ÎŽ2H and
ÎŽ18O) of submarine waters was characterised by significant variability and heavy isotope enrichment, indicating that the contribution
of groundwater in submarine waters varied from a small percentage to 20%. However, this contribution with increasing offshore
distance became negligible. Automated seepage meters and time-series measurements of 222Rn activity concentration showed a
negative correlation between the SGD rates and tidal stage. This is likely caused by sea level changes as tidal effects induce variations of hydraulic gradients. The geoelectric probing and piezometric measurements contributed to better understanding of the spatial distribution of different water masses present along the coast. The radium isotope data showed scattered distributions with offshore distance, which imply that seawater in a complex coast with many small bays and islands was influenced by local currents and
groundwater/seawater mixing. This has also been confirmed by a relatively short residence time of 1-2 weeks for water within 25 km
offshore, as obtained by short-lived radium isotopes. The irregular distribution of SGD seen at Ubatuba is a characteristic of fractured
rock aquifers, fed by coastal groundwater and recirculated seawater with small admixtures of groundwater, which is of potential
environmental concern and has implications on the management of freshwater resources in the region.This research was
supported by IAEA and UNESCO (IOC and IHP) in the framework of the joint SGD project.
Science support for some U.S. investigators was provided by grants from the National Science
Foundation (OCE03-50514 to WCB and OCE02-33657 to WSM)
Isotopic, geophysical and biogeochemical investigation of submarine groundwater discharge : IAEA-UNESCO intercomparison exercise at Mauritius Island
Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Journal of Environmental Radioactivity 104 (2012): 24-45, doi:10.1016/j.jenvrad.2011.09.009.Submarine groundwater discharge (SGD) into a shallow lagoon on the west coast of Mauritius Island (Flic-en-Flac) was
investigated using radioactive (3H, 222Rn, 223Ra, 224Ra, 226Ra, 228Ra) and stable (2H, 18O) isotopes and nutrients. SGD
intercomparison exercises were carried out to validate the various approaches used to measure SGD including radium and radon
measurements, seepage-rate measurements using manual and automated meters, sediment bulk conductivity and salinity surveys.
SGD measurements using benthic chambers placed on the floor of the Flic-en-Flac Lagoon showed discharge rates up to 500
cm/day. Large variability in SGD was observed over distances of a few meters, which were attributed to different
geomorphological features. Deployments of automated seepage meters captured the spatial and temporal variability of SGD with
a mean seepage rate of 10 cm/day. The stable isotopic composition of submarine waters was characterized by significant
variability and heavy isotope enrichment and was used to predict the contribution of fresh terrestrially derived groundwater to
SGD (range from a few % to almost 100 %). The integrated SGD flux, estimated from seepage meters placed parallel to the
shoreline, was 35 m3/m day, which was in a reasonable agreement with results obtained from hydrologic water balance
calculation (26 m3/m day). SGD calculated from the radon inventory method using in situ radon measurements were between 5
and 56 m3/m per day. Low concentrations of radium isotopes observed in the lagoon water reflected the low abundance of U and
Th in the basalt that makes up the island. High SGD rates contribute to high nutrients loading to the lagoon, potentially leading to
eutrophication. Each of the applied methods yielded unique information about the character and magnitude of SGD. The results
of the intercomparison studies have resulted a better understanding of groundwater-seawater interactions in coastal regions. Such
information is an important pre-requisite for the protection management of coastal freshwater resources.The
financial support provided by the IOC and IHP of UNESCO for travel arrangements, and by the IAEAâs Marine
Environment Laboratories for logistics is highly acknowledged. MAC and MEG were supported in part by the US
National Science Foundation (OCE-0425061 and OCE-0751525). PPP acknowledges a support provided by the EU
Research & Development Operational Program funded by the ERDF (project No. 26240220004), and the Slovak
Scientific Agency VEGA (grant No. 1/108/08). The International Atomic Energy Agency is grateful to the
Government of the Principality of Monaco for support provided to its Marine Environment Laboratories
Focused methane migration formed pipe structures in permeable sandstones: Insights from uncrewed aerial vehicle-based digital outcrop analysis in Varna, Bulgaria
Focused fluid flow shapes the evolution of marine sedimentary basins by transferring fluids and pressure across geological formations. Vertical fluid conduits may form where localized overpressure breaches a cap rock (permeability barrier) and thereby transports overpressured fluids towards shallower reservoirs or the surface. Field outcrops of an Eocene fluid flow system at Pobiti Kamani and Beloslav Quarry (ca 15 km west of Varna, Bulgaria) reveal large carbonateâcemented conduits, which formed in highly permeable, unconsolidated, marine sands of the northern Tethys Margin. An uncrewed aerial vehicle with an RGB sensor camera produces orthoârectified image mosaics, digital elevation models and point clouds of the two kilometreâscale outcrop areas. Based on these data, geological field observations and petrological analysis of rock/core samples; fractures and vertical fluid conduits were mapped and analyzed with centimetre accuracy. The results show that both outcrops comprise several hundred carbonateâcemented fluid conduits (pipes), oriented perpendicular to bedding, and at least seven beddingâparallel calcite cemented interbeds which differ from the hosting sand formation only by their increased amount of cementation. The observations show that carbonate precipitation likely initiated around areas of focused fluid flow, where methane entered the formation from the underlying fractured subsurface. These first carbonates formed the outer walls of the pipes and continued to grow inward, leading to selfâsustaining and selfâreinforcing focused fluid flow. The results, supported by literatureâbased carbon and oxygen isotope analyses of the carbonates, indicate that ambient seawater and advected fresh/brackish water were involved in the carbonate precipitation by microbial methane oxidation. Similar structures may also form in modern settings where focused fluid flow advects fluids into overlying sandâdominated formations, which has wide implications for the understanding of how focusing of fluids works in sedimentary basins with broad consequences for the migration of water, oil and gas
- âŠ