55,016 research outputs found

    Melting of Branched RNA Molecules

    Get PDF
    Stability of the branching structure of an RNA molecule is an important condition for its function. In this letter we show that the melting thermodynamics of RNA molecules is very sensitive to their branching geometry for the case of a molecule whose groundstate has the branching geometry of a Cayley Tree and whose pairing interactions are described by the Go model. Whereas RNA molecules with a linear geometry melt via a conventional continuous phase transition with classical exponents, molecules with a Cayley Tree geometry are found to have a free energy that seems smooth, at least within our precision. Yet, we show analytically that this free energy in fact has a mathematical singularity at the stability limit of the ordered structure. The correlation length appears to diverge on the high-temperature side of this singularity.Comment: 4 pages, 3 figure

    Service Performance Indicators for Infrastructure Investment

    Get PDF
    Infrastructure systems serving modern economies are highly complex, highly interconnected, and often highly interactive. The result is increased complexity in investment decision-making, and increased challenges in prioritising that investment. However, this prioritisation is vital to developing a long-term, sound, robust and achievable pipeline of national infrastructure. One key to effective, objective and prudent investment prioritisation is understanding the real performance of infrastructure. Many metrics are employed to this end, and many are imposed by governments or regulators, but often these metrics relate only to inputs or outputs in a production process. Whilst these metrics may be useful for delivery agencies, they largely fail to address the real expectations or requirements of infrastructure users — quality of service, safety, reliability, and resilience. What is required is a set of metrics which address not outputs but outcomes — that is, how well does the infrastructure network meet service needs? This paper reports on a study undertaken at a national level, to identify service needs across a range of infrastructure sectors, to assess service performance metrics in use, and to show how they or other suitable metrics can be used to prioritise investment decisions across sectors and jurisdictions

    Entanglement entropy of random quantum critical points in one dimension

    Get PDF
    For quantum critical spin chains without disorder, it is known that the entanglement of a segment of N>>1 spins with the remainder is logarithmic in N with a prefactor fixed by the central charge of the associated conformal field theory. We show that for a class of strongly random quantum spin chains, the same logarithmic scaling holds for mean entanglement at criticality and defines a critical entropy equivalent to central charge in the pure case. This effective central charge is obtained for Heisenberg, XX, and quantum Ising chains using an analytic real-space renormalization group approach believed to be asymptotically exact. For these random chains, the effective universal central charge is characteristic of a universality class and is consistent with a c-theorem.Comment: 4 pages, 3 figure

    Search For A Permanent Electric Dipole Moment Using Atomic Indium

    Full text link
    We propose indium (In) as a possible candidate for observing the permanent electric dipole moment (EDM) arising from the violations of parity (P) and time-reversal (T) symmetries. This atom has been laser cooled and therefore the measurement of its EDM has the potential of improving on the current best EDM limit for a paramagnetic atom which comes from thallium. We report the results of our calculations of the EDM enhancement factor due to the electron EDM and the ratio of the atomic EDM to the electron-nucleus scalar-pseudoscalar (S-PS) interaction coupling constant in In in the framework of the relativistic coupled cluster theory. It might be possible to get new limits for the electron EDM and the S-PS CP violating coupling constant by combining the results of our calculations with the measured value of the EDM of In when it is available. These limits could have important implications for the standard model (SM) of particle physics.Comment: 5 pages, 1 fig, Rapid Communicatio

    The Escape of Ionizing Photons from the Galaxy

    Full text link
    The Magellanic Stream and several high velocity clouds have now been detected in optical line emission. The observed emission measures and kinematics are most plausibly explained by photoionization due to hot, young stars in the Galactic disk. The highly favorable orientation of the Stream allows an unambiguous determination of the fraction of ionizing photons, F_esc, which escape the disk. We have modelled the production and transport of ionizing photons through an opaque interstellar medium. Normalization to the Stream detections requires F_esc = 6%, in reasonable agreement with the flux required to ionize the Reynolds layer. Neither shock heating nor emission within a hot Galactic corona can be important in producing the observed H-alpha emission. If such a large escape fraction is typical of L_* galaxies, star-forming systems dominate the extragalactic ionizing background. Within the context of this model, both the three-dimensional orientation of the Stream and the distances to high-velocity clouds can be determined by sensitive H-alpha observations.Comment: 4 pages; LaTeX2e, emulateapj.sty, apjfonts.sty; 4 encapsulated PS figures. For correct labels, may need to print Fig. 3 separately due to psfig limitation. Astrophysical Journal (Letters), accepte

    Gas Rich Dwarf Spheroidals

    Get PDF
    We present evidence that nearly half of the dwarf spheroidal galaxies (dSph and dSph/dIrr) in the Local Group are associated with large reservoirs of atomic gas, in some cases larger than the stellar mass. The gas is sometimes found at large distance (~10 kpc) from the center of a galaxy and is not necessarily centered on it. Similarly large quantities of ionized gas could be hidden in these systems as well. The properties of some of the gas reservoirs are similar to the median properties of the High-Velocity Clouds (HVCs); two of the HI reservoirs are catalogued HVCs. The association of the HI with the dwarf spheroidals might thus provide a link between the HVCs and stars. We show that the HI content of the Local Group dSphs and dIrrs exhibits a sharp decline if the galaxy is within 250 kpc of either the Milky Way or M31. This can be explained if both galaxies have a sufficiently massive x-ray emitting halo that produces ram-pressure stripping if a dwarf ventures too close to either giant spiral. We also investigate tidal stripping of the dwarf galaxies and find that although it may play a role, it cannot explain the apparent total absence of neutral gas in most dSph galaxies at distances less than 250 kpc. For the derived mean density of the hot gas, n_0 = 2.5e-5 cm^-2, ram-pressure stripping is found to be more than an order of magnitude more effective in removing the gas from the dSph galaxies. The hot halo, with an inferred mass of 1e10 solar masses, may represent a reservoir of ~1000 destroyed dwarf systems, either HVCs or true dwarf galaxies similar to those we observe now.Comment: AASTex preprint style, 27 pages including 12 figures. Submitted to ApJ. See also http://astro.berkeley.edu/~robisha

    Nonlinear Evolution of the Genus Statistics with Zel'dovich Approximation

    Full text link
    Evolution of genus density is calculated from Gaussian initial conditions using Zel'dovich approximation. A new approach is introduced which formulates the desired quantity in a rotationally invariant manner. It is shown that normalized genus density does not depend on the initial spectral shape but is a function of the fluctuation amplitude only.Comment: 21 pages, 6 Postscript figures, LaTe

    Traceroute sampling makes random graphs appear to have power law degree distributions

    Full text link
    The topology of the Internet has typically been measured by sampling traceroutes, which are roughly shortest paths from sources to destinations. The resulting measurements have been used to infer that the Internet's degree distribution is scale-free; however, many of these measurements have relied on sampling traceroutes from a small number of sources. It was recently argued that sampling in this way can introduce a fundamental bias in the degree distribution, for instance, causing random (Erdos-Renyi) graphs to appear to have power law degree distributions. We explain this phenomenon analytically using differential equations to model the growth of a breadth-first tree in a random graph G(n,p=c/n) of average degree c, and show that sampling from a single source gives an apparent power law degree distribution P(k) ~ 1/k for k < c

    Coherent phonon scattering effects on thermal transport in thin semiconductor nanowires

    Full text link
    The thermal conductance by phonons of a quasi-one-dimensional solid with isotope or defect scattering is studied using the Landauer formalism for thermal transport. The conductance shows a crossover from localized to Ohmic behavior, just as for electrons, but the nature of this crossover is modified by delocalization of phonons at low frequency. A scalable numerical transfer-matrix technique is developed and applied to model quasi-one-dimensional systems in order to confirm simple analytic predictions. We argue that existing thermal conductivity data on semiconductor nanowires, showing an unexpected linear dependence, can be understood through a model that combines incoherent surface scattering for short-wavelength phonons with nearly ballistic long-wavelength phonons. It is also found that even when strong phonon localization effects would be observed if defects are distributed throughout the wire, localization effects are much weaker when defects are localized at the boundary, as in current experiments.Comment: 13 page
    • …
    corecore