View metadata, citation and similar papers at core.ac.uk

PRL 100, 148101 (2008)

brought to you by .{ CORE

11 APRIL 2008
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In this Letter we show that the melting thermodynamics of RNA molecules is very sensitive to the
branching geometry. We find that, when pairing interactions are described by a G model, unbranched
RNA molecules with a linear geometry melt via a conventional continuous phase transition with classical
exponents while RNA molecules with the branching geometry of a Cayley tree, with coordination number
three, have a free energy that shows no thermodynamic singularity within numerical precision.
Nevertheless, we provide an analytical proof that the free energy does have a mathematical singularity
at the stability limit of the ordered structure. The correlation length appears to diverge but only on the

high-temperature side of this singularity.
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A fundamental principle of statistical mechanics states
that phase transitions are not possible for one-dimensional
systems unless long-range interactions are present. It thus
came as a surprise when Poland and Scheraga (PS) showed
[1] that an infinite, linear molecule composed of two
flexible polymer strands bound together by a local attrac-
tive interaction does undergo a true phase transition when
the two strands separate. The required long-range correla-
tions are due to the fact that the partition function of a
strand separation ‘“bubble” has a power-law dependence
on size [2]. This PS mechanism is encountered in the
context of the denaturation of RNA molecules [3]. RNA
molecules usually operate in a single-stranded mode.
Pairing between complementary bases of the strand pro-
duces the “‘secondary structure” [4]: a treelike graph of
unpaired ‘“bubbles” linked by paired double-helical seg-
ments. The minimum-energy secondary structure can be
predicted from the primary sequence of nucleotides [5].
Melting of the secondary structure of an RNA molecule
produces a “‘molten-globule” state with the molecule fluc-
tuating over a range of different secondary structures [6].
In his pioneering paper of 1968 [7], de Gennes showed that
the partition function G(L) of a large RNA molecule
fluctuating over all possible secondary structures, with
identical pairing energies, has a power-law dependence
on size of the form z/L? with 6 = 3/2. Subsequently,
Bundschuh and Hwa [8] showed that if the ground state
secondary structure of an RNA molecule is a long, uniform
hairpin, then the molecule undergoes a continuous phase
transition to the molten-globule state with the same melt-
ing thermodynamics as that of the PS model.

Actual RNA secondary structures have a heterogeneous,
branched, treelike form. In this Letter we will discuss the
effects of branching on the melting thermodynamics. The
ground state secondary structure will be assumed to be a
Cayley tree (see Fig. 1) with coordination number three.
The RNA strand traces out the perimeter of the tree, start-
ing and ending at the root of the tree, with each branch of
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the tree occupied by a complementary base pair. The total
size of the molecule is indexed by the level k of the tree,
which is related to the total sequence length N(k) by
N(k) = 2K72 — 2 bases (a k = 1 tree is here a three-armed
star with one base pair per arm). If one numbers the bases
of the strand then the ‘“‘designed” ground state will be
denoted by the set S = {(i}, j1), (i, Jo), .- -, (s jag)} OF
complementary pairs.

The folding energy of the molecule will be described by
a ““Go model”’ [9] where one assigns a binding energy —&
to a pair belonging to the set S and a weaker binding energy
—e¢ if the pair does not belong to S (the ‘“‘nonspecific”
binding energy). We will allow in general any secondary
structure provided it does not have circuits (or ‘“pseudo-
knots™). In the G6 model, the finite temperature partition
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FIG. 1 (color online). Single-stranded RNA molecule having a
branched secondary structure that follows the outline of a Cayley
tree with coordination number three. Nucleotides are schemati-
cally indicated by circles, bonds between nucleotides and com-
plementary pairing by solid lines around the perimeter or across
the structure, respectively. (a) Ground state structure with pairing
restricted to a complementary ‘“‘native” pair for each branch of
the Cayley tree. (b) In a molten-globule bubble (hatched) all
possible pairing interactions are permitted. (c¢) For a fixed set S’
of specific base pairs (solid lines) the set C(S’) is defined as all
possible sets of base pairs compatible with the base pairs in set S’
(dashed lines are one example of such a set). Note that the
additional base pairs are constrained to the loops of the structure
S’ so the sum over all possible base-pairing configurations
factorizes into a factor from each such loop.
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function is given by

Z(q.¢8)=> g > 4, (1
s'cs §"ECxs(S)

where g = exp(Be) and § = exp(B€) are the Boltzmann
weights of nonspecific and specific pairs, respectively. The
first sum in Eq. (1) is over all subsets S’ of S. Once such a
subset S’ is fixed, Cyns(S’) denotes the collection of all sets
S’ of nonspecifically paired bases such that the union S’ U
S defines an acceptable, circuit-free secondary structure
for the molecule as a whole [see Fig. 1(c)]. The difficulty in
evaluating the partition function resides in the fact that in
the second sum we cannot allow pairing between specific
pairs that do not belong to S’. In order to simplify the
second sum, we apply a variant of the binomial theorem to
the first sum over S’ by replacing it with a double sum over
all possible ways to divide §’ into two parts S; and S,
whose union §; U S, equals S":

S => > (G- "¢l f(s,USy).

s'cs $1CSs,c88,
(2)

Here, S§, denotes the complement of S}, and f(T) is any
function defined on the set 7. Replacing the sum over S’ in
Eq. (1) by a double sum over S; and S, gives

2(g.48) =Y @—q" > 4% 3)

$CS S3EC(S))

where C(S)) is defined in the same way as Cys(S’), except
that the restriction excluding specific pairing has been
lifted. The specific pairs were included through the sum
over S, in Eq. (2). The statistical weight Zs3ec(sl)qls3| now
can be written as the product of the statistical weights for
the individual loops L(S) linking the clusters of specific
pairs belonging to Sy:

2(q.48) =Y @G- " [T GLG). @
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Here, G(L) « zy(g)*/L? is the familiar “molten-globule”
partition function for a strand of length L, which depends
only on ¢g. The partition function can be viewed as a sum
over all possible bubble configurations, with G(L) the
partition function of the bubble [10].

Equation (4) has a form for which we can construct
explicit recursion relations. The first step is to remove
from the sum the open loop located at the root of the tree
(see Fig. 1):

N(k)/2
2635 =3 GenW(kn), 5)
n=0

with n the number of base pairs in the root bubble. Here,
W(k, n) is a restricted partition function, i.e., the partition
function of a molecule with n accessible bases in the open
bubble at the root, but not including the configurations of

the open bubble. We cut the tree into two equal sized
subtrees with level index £ — 1. The number of accessible
base pairs of the two subtrees together must add ton — 1,
as we removed one pair by the cutting operation. Because
we permit no circuits, the restricted partition function of a
level k tree for n > (0 can be expressed in terms of a product
of the restricted partition functions of two k — 1 level
subtrees:

n—1
W(k, n) = Z Wk—1,mWk—-1n—1-—m), (6)
m=0

with W(k — 1, m) = 0if m > 2% — 1. The n = O case, i.e.,
a tree with no bubble at the root, must be treated separately.
Take the first complementary pair at the root of the tree out
of the partition function, and then sum over all possible
sizes for the bubble that immediately follows this pair
(including bubbles of zero size) and treat those bubbles
as the bubble at the root of a new tree that can again be cut
into two equal parts in the same way as before. Using
Eq. (4), we obtain a second recursion relation:

2k—12k—1
W(kr 0) = (Cj - Q) Z Z W(k - l,l’l])W(k - 1) n2)

n;=0n,=0

X G[2(n; + ny)]. (7)

Equations (6) and (7) together constitute a complete set
of recursion relations from which W(k, n) can be obtained
by iterative solution. The initial conditions for the recur-
sion relations are W(1,0) = (§ — g)[1 + 4q + ¢*> + 2§ +
gl wL,1)=@G-q?% W12 =23—q), and
W(1,3) =1, as follows by inspection. We carried out
this iteration procedure numerically, up to level k = 19,
for different values of § = exp(B€) and for fixed ¢ = 4. In
Fig. 2 we show the second derivative of the free energy per
site with respect to ¢, which effectively correspond to the
heat capacity. As one increases the value of k, a maximum
develops near § = 80. However, within the numerical
precision, the free energy per site does not develop a
thermodynamic singularity in the large N limit. This
must be contrasted with the Bundschuh and Hwa case,
where the molecule had a uniform, linear ground state, in
which case the heat capacity very clearly develops such a
singularity already for much smaller system sizes (left-
hand inset of Fig. 2).

In order to examine subleading contributions to the free
energy, i.e., terms that are small compared to the leading
term proportional to N, we also computed the “pinching
free energy”’

AF(k)/kgT = nZ(k + 1) — 2 1nZ(k). (8)

For example, in a molten-globule phase the partition func-
tion should have the asymptotic scaling form a ™z} /N>/?
for large N. The pinching free energy AF(k)/kpT =3 X
(k +2)In2 — Ina™ then should have a linear dependence
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FIG. 2 (color online). Second derivative of the free energy
with respect to the Boltzmann weight § of specifically paired
bases plotted as a function of g for different values of the level &
of the Cayley tree ground state. The free energy was computed
numerically from the recursion relations Eqs. (6) and (7) and
expressed in units of NkzT with N the sequence length of the
RNA strand. The arrow denotes the location of the mathematical
singularity associated with melting of the root of the Cayley tree.
Left-hand inset: Same except that the ground state is a linear
hairpin. A thermodynamic singularity develops near
g. = 18.4 with mean-field critical exponents. Right-hand
inset: Numerically computed “pinching” free energy AF(k)
[see Eq. (8)] versus the level k of the Cayley tree. For g larger
then 90, AF(k)/kgT is independent of k, consistent with the
ordered ground state. For ¢ less than 20, AF(k)/kgT can be fitted
by the scaling relation AF(k)/kpT =3 (k +2)In2 — Ina™ asso-
ciated with the molten-globule state. The crossover point be-
tween these two regimes for intermediate values of § marks the
size of the ordered, correlated regions in the molten-globule
state. For g above 80, the size of these correlated regions exceeds
the system size.

on k, with slope 3/2. In an ordered phase, the partition
function should scale as a™z)) for large N, in which case
AF(k) should be a constant independent of k. The right-
hand inset of Fig. 2 shows that, for § values up to 80, AF(k)
indeed has a linear dependence on k, for large k, with a
slope close to 3/21n2. This indicates that, for § values
below 80, the tree is in the molten-globule phase. Since for
the corresponding case of a linear ground state the melting
point is as low as §. = 18.4 for ¢ = 4.0, we are forced to
conclude that branching has a powerful destabilizing effect
on the ordered state.

For smaller k values, the pinching free energy is a
constant, which indicates that the ordered ground state
dominates over shorter length scales. The crossover point
separating the two regimes can be interpreted as a corre-
lation length ¢ whose physical meaning would be that of
the typical size of smaller ordered Cayley tree-type struc-
tures imbedded in a larger molten-globule state. The value
of ¢ increases with § and beyond § = 80 it exceeds our
maximum system size (N = 10°). A fit to a power law & «
(g. — )~ produces a correlation length exponent v =~ 2.1
and a critical g, ~ 80.

Can we really be sure that the ordered phase is thermo-
dynamically stable at any finite temperature? The re-

stricted partition function is expected to have the scaling
form W(N, n) ~ w(n)zj in the ordered phase, with w(n)
the fraction of configurations that have an open bubble at
the root of size n. If we insert this ansatz into the recursion
relation Eq. (6), we obtain, for positive n, the following
fixed-point condition:

n—1

w(n) = Z wm)w(n — 1 — m). 9)

m=0

This equation can be solved by applying the discrete
Laplace transform w(z) = Y o°_,w(m)z~™. The solution

Ww(z) =4%— ,/% — zw(0) has a branch cut starting at z =
4w(0), with w(0) an undetermined constant. After applying
an inverse Laplace transform, one finds that w(n) actually
has the same scaling form as the partition function of a

molten globule:

exp{—nlIn[1/4w(0)]}
w(n) =« i )

(10)

The mathematical origin of the n~3?2 factor is here a
combinatorial factor that reflects the different ways one
can partition the open bubble between the two subtrees. We
may interpret £ ~ 1/1n[1/4w(0)] as the characteristic size
of a molten-globule bubble at the root of the tree in the
ordered phase. Numerical iteration of the recursion rela-
tions for W(k, n) for § = 150 and g = 4 were found to be
consistent with Eq. (10). If we now use W(N, n) ~ w(n)z})
in the remaining recursion relation Eq. (7), together with
Eq. (9), then one obtains the following self-consistency
relation for the remaining unknown constant w(0):

w(o) =1-1 7( Lémw/02dz, (11)

2 z

where G(z) is the discrete Laplace transform of G(L) [11].
G(z) has a branch cut that terminates at z = (1 + 2./9)*.
The integration contour in Eq. (11) must run inside an
annulus in the complex plane that surrounds the origin
passing the real axis outside the branch cut of G(z) but
inside the branch cut of w(1/z) that starts at z = 1/4w(0).
That means that the contour integral only can be carried out
as long as w(0) = 1/4(1 + 2,/g)*. The partition function
develops a mathematical singularity when the two branch
cuts merge. At that point, the partition function w(n) o
[1/4w(0)]"/n3/? of the root bubble has the same form as
the partition function G(n) o [(1 + 2,/g)*]"/n*? for a
molten globule of the same size. We thus identify w(0) =
1/4(1 + 2,/g)* as the stability limit of a finite temperature
ordered phase. Note that the (low-temperature) correlation
length & ~ 1/1n[1/4w(0)] cannor diverge at the stability
limit. The critical value g, for ¢ at the stability limit is now
easily obtained by noting that w(0) is small compared to 1.

Expanding the argument of the contour integral in powers
of w(0) leads to
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(@ — )" =w(0) + 2(1 + ¢g)w(0)*
+5(1 + 6g +2¢)w0) + -, (12)

If Eq. (12) is combined with w(0) = 1/4(1 + 2./¢)* one
finds that for ¢ = 4 the singularity is located at . = 92.6.
The numerically computed free energy per site exhibits no
singular dependence on ¢ in that range (see Fig. 2). This is
not inconsistent because w(n) only contributes a sublead-
ing term to the total free energy. On the other hand, the
correlation length obtained from the pinching free energy
appears to diverge near §.. We encountered, however,
strong finite-size effects in the numerical solution of the
recursion relations for g values in the range between 80 and
90, which make it difficult to numerically explore the
critical properties in more detail.

In summary, a branched RNA molecule in the form of a
Cayley tree does have a mathematical singularity in the
free energy at a temperature where the ordered ground state
becomes unstable. This singularity does not correspond to
a conventional phase transition, however, as the numeri-
cally computed specific heat does not exhibit an anomaly at
the singularity. On the high-temperature side, the numeri-
cally computed correlation length appears to diverge yet
the mathematical singularity itself is not associated with a
divergence of the correlation length. We conclude that
branching (i) ‘“‘smears out” the melting transition and
(i) destabilizes the ordered phase but without suppressing
it altogether.

Experimental studies comparing the melting character-
istics of large, branched RNA molecules with that of linear,
unbranched molecules that could probe this exotic form of
melting would be very interesting. An important question
in this respect would be the role of excluded-volume
interactions and of “‘tertiary’’ pairing interactions, i.e.,
pairing interactions that introduce, for example, pseudo-
knots. Excluded-volume interactions in general tend to
suppress thermal fluctuations and possibly could restore

the thermodynamic singularity in the free energy per site
that was encountered for linear molecules. Tertiary inter-
action could have the effect of turning a branched, second-
ary template into a three-dimensional gel-like structure, in
which case the transition to the molten-globule state could
resemble the melting transition of a bulk solid material.
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