19 research outputs found

    Microbial cycling of isoprene, the most abundantly produced biological volatile organic compound on Earth

    Get PDF
    Isoprene (2-methyl-1,3-butadiene), the most abundantly produced biogenic volatile organic compound (BVOC) on Earth, is highly reactive and can have diverse and often detrimental atmospheric effects, which impact on climate and health. Most isoprene is produced by terrestrial plants, but (micro)algal production is important in aquatic environments, and the relative bacterial contribution remains unknown. Soils are a sink for isoprene, and bacteria that can use isoprene as a carbon and energy source have been cultivated and also identified using cultivation-independent methods from soils, leaves and coastal/marine environments. Bacteria belonging to the Actinobacteria are most frequently isolated and identified, and Proteobacteria have also been shown to degrade isoprene. In the freshwater-sediment isolate, Rhodococcus strain AD45, initial oxidation of isoprene to 1,2-epoxy-isoprene is catalyzed by a multicomponent isoprene monooxygenase encoded by the genes isoABCDEF. The resultant epoxide is converted to a glutathione conjugate by a glutathione S-transferase encoded by isoI, and further degraded by enzymes encoded by isoGHJ. Genome sequence analysis of actinobacterial isolates belonging to the genera Rhodococcus, Mycobacterium and Gordonia has revealed that isoABCDEF and isoGHIJ are linked in an operon, either on a plasmid or the chromosome. In Rhodococcus strain AD45 both isoprene and epoxy-isoprene induce a high level of transcription of 22 contiguous genes, including isoABCDEF and isoGHIJ. Sequence analysis of the isoA gene, encoding the large subunit of the oxygenase component of isoprene monooxygenase, from isolates has facilitated the development of PCR primers that are proving valuable in investigating the ecology of uncultivated isoprene-degrading bacteria

    Vocal recruitment for joint travel in wild chimpanzees

    Get PDF
    Joint travel is a common social activity of many group-living animals, which requires some degree of coordination, sometimes through communication signals. Here, we studied the use of an acoustically distinct vocalisation in chimpanzees, the 'travel hoo', a signal given specifically in the travel context. We were interested in how this call type was produced to coordinate travel, whether it was aimed at specific individuals and how recipients responded. We found that 'travel hoos' were regularly given prior to impending departures and that silent travel initiations were less successful in recruiting than vocal initiations. Other behaviours associated with departure were unrelated to recruitment, suggesting that 'travel hoos' facilitated joint travel. Crucially, 'travel hoos' were more often produced in the presence of allies than other individuals, with high rates of recruitment success. We discuss these findings as evidence for how motivation to perform a specific social activity can lead to the production of a vocal signal that qualifies as 'intentional' according to most definitions, suggesting that a key psychological component of human language may have already been present in the common ancestor of chimpanzees and humans

    Group Release of Sanctuary Chimpanzees (Pan troglodytes) in the Haut Niger National Park, Guinea, West Africa: Ranging Patterns and Lessons So Far

    No full text
    The release of wild or captive-bred mammals within their historical ranges typically aims to reestablish populations in areas where they have become extinct or extirpated, to reinforce natural populations, or to resolve human-wildlife conflicts. Such programs, which also typically in parallel help foster the protection of the release site, concern a wide range of endangered mammalian species, including our closest living relatives: chimpanzees. In June 2008, the Chimpanzee Conservation Center (CCC), which is located in the High Niger National Park (HNNP) in Guinea, released a group of 12 chimpanzees (Pan troglodytes verus) comprised of 6 females and 6 males (8-20 yr old). The selected release site lies 32 km from the sanctuary in the Mafou, a core area of HNNP where wild chimpanzees are also known to occur. The purpose of this release was therefore to reinforce the natural chimpanzee population within the Mafou core area and to promote the protection of the HNNP. Nearly 2 yr postrelease, 9 chimpanzees still remain free-living. Two thirds of the release chimpanzees were equipped with VHF-GPS store-on-board tracking collars. We used data from retrieved collars to explore the release chimpanzees' habitat use, individual day range, and core area use (50% and 80%) during the first year of the release. Males traveled significantly further than females. Although minimum day range did not differ between the sexes or vary seasonally, some release males were active for longer during the day than the females. Males also ranged over larger areas and used a wider network of core areas than the females. Habitat use was similar to that recorded in wild chimpanzees in the HNNP. As of September 2010, 2 males and 3 females form a group at the release site. Two of these females gave birth to healthy offspring respectively 16 and 20 mo postrelease. Another female successfully immigrated into a wild chimpanzee community. We suggest that the success of this chimpanzee release can be attributed to the CCC's lengthy rehabilitation process and the savanna-mosaic habitat of the HNNP. This release demonstrates that under special socioecological circumstances, the release of wild-born adult chimpanzees of both sexes is a viable strategy, which can also function as an effective conservation tool

    The saltation illusion demonstrates integrative processing of spatiotemporal information in thermoceptive and nociceptive networks

    Full text link
    In sensory saltation, first reported by Geldard and Sherrick (Science 178:178-179, 1972), a stimulus is displaced towards a second one following closely in time and space as a function of the delay between the stimuli. The distance between stimulus locations is restricted by the extension of sensory fields in the primary somatosensory cortex. Saltation is assumed to reflect dynamic changes in these cortical representations. The present study demonstrates for the first time saltation in thermoceptive and nociceptive pathways with CO(2) laser stimulation. Stimuli were presented to the dorsal forearms of 18 healthy subjects at two intensities. Saltation patterns consisted of a reference stimulus S0 near the wrist, the first test stimulus S1 at the reference location after a fixed onset delay of 1,000 ms, and a second test stimulus S2 at a location 105 mm distant from reference after a variable onset delay of 60-516 ms. Perceived positions were indicated by the subjects without skin contact with a 3D tracker. As expected, subjects mislocalized S1 towards S2. Mean S1 displacement was 51+/-36 mm. Decreasing delays between S1 and S2 resulted in increasing displacements, independent of intensity. However, since no clear-cut discrimination of thermal versus nociceptive activation could be achieved definite conclusions about differences between the two modalities cannot be drawn. In addition, effects of body site on the saltation characteristics were observed. The saltation paradigm constitutes a promising approach to the functional analysis of spatiotemporal dynamics in thermoceptive and nociceptive networks to supplement brain-mapping approaches to cortical sensory fields
    corecore