1,222 research outputs found

    A quasi-particle description of the M(3,p) models

    Full text link
    The M(3,p) minimal models are reconsidered from the point of view of the extended algebra whose generators are the energy-momentum tensor and the primary field \phi_{2,1} of dimension (p2)/4(p-2)/4. Within this framework, we provide a quasi-particle description of these models, in which all states are expressed solely in terms of the \phi_{2,1}-modes. More precisely, we show that all the states can be written in terms of \phi_{2,1}-type highest-weight states and their phi_{2,1}-descendants. We further demonstrate that the conformal dimension of these highest-weight states can be calculated from the \phi_{2,1} commutation relations, the highest-weight conditions and associativity. For the simplest models (p=5,7), the full spectrum is explicitly reconstructed along these lines. For pp odd, the commutation relations between the \phi_{2,1} modes take the form of infinite sums, i.e., of generalized commutation relations akin to parafermionic models. In that case, an unexpected operator, generalizing the Witten index, is unravelled in the OPE of \phi_{2,1} with itself. A quasi-particle basis formulated in terms of the sole \phi_{1,2} modes is studied for all allowed values of p. We argue that it is governed by jagged-type partitions further subject a difference 2 condition at distance 2. We demonstrate the correctness of this basis by constructing its generating function, from which the proper fermionic expression of the combination of the Virasoro irreducible characters \chi_{1,s} and \chi_{1,p-s} (for 1\leq s\leq [p/3]+1) are recovered. As an aside, a practical technique for implementing associativity at the level of mode computations is presented, together with a general discussion of the relation between associativity and the Jacobi identities.Comment: 29 pages; revised version with two appendices adde

    Integrating Emerging Areas of Nursing Science into PhD Programs

    Get PDF
    The Council for the Advancement of Nursing Science aims to “facilitate and recognize life-long nursing science career development” as an important part of its mission. In light of fast-paced advances in science and technology that are inspiring new questions and methods of investigation in the health sciences, the Council for the Advancement of Nursing Science convened the Idea Festival for Nursing Science Education and appointed the Idea Festival Advisory Committee to stimulate dialogue about linking PhD education with a renewed vision for preparation of the next generation of nursing scientists. Building on the 2010 American Association of Colleges of Nursing Position Statement “The Research-Focused Doctoral Program in Nursing: Pathways to Excellence,” Idea Festival Advisory Committee members focused on emerging areas of science and technology that impact the ability of research-focused doctoral programs to prepare graduates for competitive and sustained programs of nursing research using scientific advances in emerging areas of science and technology. The purpose of this article is to describe the educational and scientific contexts for the Idea Festival, which will serve as the foundation for recommendations for incorporating emerging areas of science and technology into research-focused doctoral programs in nursing

    Emerging Areas of Nursing Science and PhD Education for The 21\u3csup\u3est\u3c/sup\u3e Century: Response to Commentaries

    Get PDF
    We respond to commentaries from the American Academy of Nursing, the American Association of Colleges of Nursing, and the National Institute of Nursing Research on our thoughts about integrating emerging areas of science into nursing PhD programs. We identify areas of agreement and focus our response on cross-cutting issues arising from cautions about the unique focus of nursing science and how best to proceed with incorporation of emerging areas of science into nursing PhD programs

    Estimating Probability of Failure of a Complex System Based on Inexact Information about Subsystems and Components, with Potential Applications to Aircraft Maintenance

    Get PDF
    In many real-life applications (e.g., in aircraft maintenance), we need to estimate the probability of failure of a complex system (such as an aircraft as a whole or one of its subsystems). Complex systems are usually built with redundancy allowing them to withstand the failure of a small number of components. In this paper, we assume that we know the structure of the system, and, as a result, for each possible set of failed components, we can tell whether this set will lead to a system failure. For each component A, we know the probability P(A) of its failure with some uncertainty: e.g., we know the lower and upper bounds P(A) and P(A) for this probability. Usually, it is assumed that failures of different components are independent events. Our objective is to use all this information to estimate the probability of failure of the entire the complex system. In this paper, we describe several methods for solving this problem, including a new efficient method for such estimation based on Cauchy deviates

    Comparison of Regional Body Composition Estimates Obtained from Dual-energy X-ray Absorptiometry and Single-frequency Bioelectrical Impedance Analysis

    Get PDF
    The anatomical distribution of fat mass (FM) and lean mass (LM) is significant for health and athletic performance. Dual-energy x-ray absorptiometry (DXA) is often used for regional body composition analysis but is not portable, often inaccessible, and costly, while single-frequency bioelectrical impedance analysis (SFBIA) is a more affordable and accessible alternative. PURPOSE: The purpose of this analysis was to compare regional body composition estimates obtained via DXA and SFBIA. METHODS: After an overnight food and fluid fast, 102 adults (64 F, 38 M; age: 29.2 ± 13.4 y; BMI: 24.3 ± 3.9 kg/m2; BF%: 24.6 ± 8.3%) underwent assessments via DXA and SBFIA, each of which provided estimates of FM and LM for the whole body, torso, legs, and arms. DXA scans were performed using custom-made foam blocks to enhance accuracy of regional body composition estimates. SFBIA was performed using an 8-lead device with a 12-channel multiplexer. Both DXA and SFBIA were performed in the supine position. DXA was designated as the criterion method, and body composition estimates were compared using paired-samples t-tests using a Bonferroni-corrected significance level of p ≤ 0.00625. Additional evaluations were conducted using the correlation coefficient (r), constant error (CE), standard error of the estimate (SEE), and total error (TE). RESULTS: Correlations between DXA and SFBIA were high, and the magnitude of errors was generally small: LMTOTAL (r: 0.97; CE: 1.4 kg; SEE: 2.7 kg; TE: 2.9 kg), LMLEGS (r: 0.85; CE: -0.3 kg; SEE: 2.0 kg; TE: 2.1 kg), LMTORSO (r: 0.92; CE: 1.0 kg; SEE: 2.2 kg; TE: 2.5 kg), LMARMS (r: 0.96; CE: 0.6 kg; SEE: 0.6 kg; TE: 0.8 kg), FMTOTAL (r: 0.95; CE: -2.3 kg; SEE: 2.6 kg; TE: 3.5 kg), FMLEGS (r: 0.83; CE: -1.0 kg; SEE: 1.2 kg; TE: 2.0 kg), FMTORSO (r: 0.90; CE: -1.3 kg; SEE: 2.2 kg; TE: 2.6 kg), and FMARMS (r: 0.89; CE: -0.1 kg; SEE: 0.5 kg; TE: 0.5 kg). Despite the relatively small magnitude of differences in FM and LM estimates between DXA and SFBIA, results of paired-samples t-tests indicated that all differences were statistically significant (p \u3c 0.0001), with the exception of LMLEGS (p=0.13) and FMARMS (p=0.11). CONCLUSION: Despite the fact that body composition estimates for most regions exhibited statistically significant differences between DXA and SFBIA, the strong correlations (r: 0.83 to 0.97) and relatively low magnitude of error (CE: -2.3 to 1.4 kg; TE: 0.8 to 3.5 kg) indicate that SFBIA may be an acceptable alternative to DXA when regional body composition is being evaluated and DXA is unavailable. However, additional research is needed to determine the ability of SFBIA to accurately track changes in regional body composition over time. Due to its low cost, portability, and ease of use, the presently examined SFBIA device may represent a useful tool for the evaluation of regional body composition when more advanced methods are unavailable

    Validity of Four-Compartment Model Body Fat Using Single- or Multi-frequency Bioelectrical Impedance Analysis to Estimate Body Water

    Get PDF
    Most common body composition assessment techniques make assumptions about the body, including the density and hydration of fat-free mass (FFM). An advantage of the four-compartment (4C) model is the ability to take these FFM characteristics into account when assessing body composition, thus reducing potential error. The total body water (TBW) estimate utilized in 4C models is particularly important due to the large contribution of water to an adult human’s total body mass (~40 - 70%) and FFM (~68 - 81%); however, the impact of utilizing different estimates of TBW within 4C model has not been fully explored. PURPOSE: The purpose of this investigation was to examine the validity of body fat percentage (BF%) estimates produced by 4C models utilizing single- or multi-frequency bioelectrical impedance analysis (BIA) TBW estimates as compared to a criterion 4C with TBW from bioimpedance spectroscopy (BIS). METHODS: After an overnight food and fluid fast, a sample of 101 adults (63 F, 38 M; age: 29.3 ± 13.5 y; BMI: 24.3 ± 4.0 kg/m2; BF%: 24.5 ± 8.3%) completed assessments via dual-energy x-ray absorptiometry (DXA), air displacement plethysmography (ADP), BIS, single-frequency BIA (SFBIA), multi-frequency BIA (MFBIA) and a body mass scale. A criterion 4C model (4CBIS) estimate of BF% was obtained using DXA for bone mineral, ADP for body volume, scale for body mass, and BIS for TBW. BIS was used as the reference TBW method due to its more direct estimation of TBW via mathematical procedures (i.e. Cole modeling and mixture theories) as compared to the prediction equations used by BIA. Alternate 4C estimates of BF% were produced using TBW values from MFBIA (4CMFBIA) and SFBIA (4CSFBIA). BF% estimates were compared using one-way ANOVA, and additional evaluations were conducted using the coefficient of determination (R2), constant error (CE), total error (TE), and 95% limits of agreement (LOA). RESULTS: BF% did not differ between 4CBIS (24.5 ± 8.3%), 4CMFBIA (24.4 ± 8.9%), and 4CSFBIA (25.7 ± 8.3%; p=0.52). 4CMFBIA exhibited negligible CE (-0.1 ± 2.3%), R2 of 0.97, TE of 2.3%, and LOA of 4.4%. 4CSFBIA exhibited a small CE (1.2 ± 1.2%), R2 of 0.98, TE of 1.6%, and LOA of 2.3%. CONCLUSION: At the group level, BF% estimates did not differ between any 4C model, indicating that both SFBIA and MFBIA can serve as viable alternatives to BIS for TBW estimation. Although the magnitude of group error (i.e. CE) was slightly smaller in 4CMFBIA, the individual error (i.e. LOA) and total error were smaller in 4CSFBIA,indicating that SFBIA TBW estimates may be more appropriate when tracking body composition changes within individuals using a 4C model. While the MFBIA and SFBIA technologies employed in the present study exhibited good validity, these results may not be attributable to all BIA analyzers. The quality of assessment device, affordability, portability and ease of use should be considered when utilizing an impedance-based technology for TBW estimation in a 4C model

    Validity of Infrared 3-dimensional Scanning for Estimation of Body Composition: A 4-Compartment Model Comparison

    Get PDF
    Multiple infrared 3-dimensional (3D) scanning technologies exist, including time of flight (ToF) scanners and structured light scanners with static (SL-S) and dynamic (SL-D) configurations. ToF scanners measure depth by using the round-trip time of reflected photons, whereas SL scanners measure deformations in light patterns and allow for creation of a depth image using geometric triangulation. Recently, 3D scanning technologies have been proposed as novel methods of body composition assessment. PURPOSE: The purpose of this analysis was to examine the validity of four different commercially-available 3D scanners for estimation of body fat percentage (BF%) as compared to a 4-compartment (4C) model criterion. METHODS: After an overnight fast, 101 adults (63 F, 38 M; age: 29.3 ± 13.5 y; BMI: 24.3 ± 3.9 kg/m2; BF%: 24.6 ± 8.3%) completed assessments via dual-energy x-ray absorptiometry (DXA), air displacement plethysmography (ADP), bioimpedance spectroscopy (BIS), a standard body mass scale, and four infrared 3D scanners. Two scanners (3DSSL-D1; 3DSSL-D2) utilized structured light scanning with a dynamic configuration, one utilized structured light scanning with a static configuration (3DSSL-S), and one utilized time-of-flight technology (3DSToF). Using the equation of Wang et al. (2002), a criterion 4C estimate of BF% was obtained using DXA for bone mineral, ADP for body volume, scale for body mass, and BIS for total body water. BF% estimates were compared using one-way ANOVA with Bonferroni adjustment for multiple comparisons, and additional evaluations were conducted using the correlation coefficient (r), constant error (CE), standard error of the estimate (SEE), total error (TE), and 95% limits of agreement (LOA). RESULTS: Estimates of BF% did not significantly differ between 4C and any of the 3D scanners. However, metrics of group, individual, and prediction errors varied between scanners: 3DSSL-D1: p=1.0; CE: 0.4%; r: 0.91; SEE: 2.5%; TE: 3.6%; LOA: ±7.0%; 3DSSL-D2: p= 1.0; CE: 0.8%; r: 0.86; SEE: 4.2%; TE: 4.7%; LOA: ±9.2%; 3DSSL-S: p= 1.0; CE: 1.0%; r: 0.81; SEE: 4.0%; TE: 5.0%; LOA: ±9.7%; 3DSToF: p=0.08; CE: -2.9%; r: 0.86, SEE: 2.5%; TE: 5.2%; LOA: ±8.6%. CONCLUSION: All three structured light scanners exhibited low magnitudes of group error (CE ≤ 1%) and may be valid assessment methods when analyzing the body composition of groups. 3DSSL-D1 exhibited the lowest group-level error (i.e. CE), prediction errors (i.e. SEE; TE), and individual error (i.e. LOA) of all scanners. Therefore, this device was deemed the most valid 3D scanner for body composition assessment. 3DSSL-D2, 3DSSL-S, and 3DSToF exhibited comparable TE, although group-level error was lower in 3DSSL-D2 and 3DSSL-S, while the SEE and individual-level error was lower for 3DSToF. However, individual-level errors were relatively high with all scanners (LOA ≥ 7%), which calls into question the utility of these methods for assessing the body composition of individuals. Nonetheless, additional research is needed regarding the ability of 3DS to successfully detect changes in body composition over time

    Redefining and revisiting cost estimates of routine ART care in Zambia: An analysis of ten clinics

    Get PDF
    INTRODUCTION: Accurate costing is key for programme planning and policy implementation. Since 2011, there have been major changes in eligibility criteria and treatment regimens with price reductions in ART drugs, programmatic changes resulting in clinical task-shifting and decentralization of ART delivery to peripheral health centres making existing evidence on ART care costs in Zambia out-of-date. As decision makers consider further changes in ART service delivery, it is important to understand the current drivers of costs for ART care. This study provides updates on costs of ART services for HIV-positive patients in Zambia. METHODS: We evaluated costs, assessed from the health systems perspective and expressed in 2016 USD, based on an activity-based costing framework using both top-down and bottom-up methods with an assessment of process and capacity. We collected primary site-level costs and resource utilization data from government documents, patient chart reviews and time-and-motion studies conducted in 10 purposively selected ART clinics. RESULTS: The cost of providing ART varied considerably among the ten clinics. The average per-patient annual cost of ART service was 116.69(range:116.69 (range: 59.38 to 145.62)usingabottomupmethodand145.62) using a bottom-up method and 130.32 (range: 94.02to94.02 to 162.64) using a top-down method. ART drug costs were the main cost driver (67% to 7% of all costs) and are highly sensitive to the types of patient included in the analysis (long-term vs. all ART patients, including those recently initiated) and the data sources used (facility vs. patient level). Missing capacity costs made up 57% of the total difference between the top-down and bottom-up estimates. Variability in cost across the ten clinics was associated with operational characteristics. CONCLUSIONS: Real-world costs of current routine ART services in Zambia are considerably lower than previously reported estimates and sensitive to operational factors and methods used. We recommend collection and monitoring of resource use and capacity data to periodically update cost estimates
    corecore