

To cite this document: Kreinovich, Vladik and Jacob, Christelle and Dubois, Didier and

Cardoso, Janette and Ceberio, Martine and Batyrshin, Ildar Estimating Pro- bability of

Failure of a Complex System Based on Inexact Information about Subsystems and

Components, with Potential Applications to Aircraft Maintenance. (2011) In: 10th

Mexican Int. Conf. on Artificial Intelligence (MICAI), 26 November 2011 - 04

December 2011 (Puebla, Mexico).

Open Archive Toulouse Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/

Eprints ID: 10962

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@inp-toulouse.fr

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/19983643?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oatao.univ-toulouse.fr/
mailto:staff-oatao@inp-toulouse.fr

Estimating Probability of Failure of a Complex

System Based on Inexact Information about
Subsystems and Components, with Potential

Applications to Aircraft Maintenance

Vladik Kreinovich3, Christelle Jacob1,2, Didier Dubois2, Janette Cardoso1,
Martine Ceberio3, and Ildar Batyrshin4

1 Institut Supérieur de l’Aéronautique et de l’Espace (ISAE), DMIA department,
Campus Supaéro, 10 avenue Édouard Belin, Toulouse, France

jacob@irit.fr, cardoso@isae.fr
2 Institut de Recherche en Informatique de Toulouse (IRIT), 118 Route de Narbonne

31062 Toulouse Cedex 9, France
dubois@irit.fr

3 University of Texas at El Paso, Computer Science Dept., El Paso, TX 79968, USA
{mceberio,vladik}@utep.edu

4 Instituto Mexicano de Petróleo, Ejec Central Lázaro Cardenas Norte 152, Col. San
Bartolo Atepehuacan México D.F., C.P. 07730

batyr@imp.mx

Abstract. In many real-life applications (e.g., in aircraft maintenance),
we need to estimate the probability of failure of a complex system (such
as an aircraft as a whole or one of its subsystems). Complex systems are
usually built with redundancy allowing them to withstand the failure of
a small number of components. In this paper, we assume that we know
the structure of the system, and, as a result, for each possible set of
failed components, we can tell whether this set will lead to a system
failure. For each component A, we know the probability P (A) of its
failure with some uncertainty: e.g., we know the lower and upper bounds
P (A) and P (A) for this probability. Usually, it is assumed that failures
of different components are independent events. Our objective is to use
all this information to estimate the probability of failure of the entire
the complex system. In this paper, we describe a new efficient method
for such estimation based on Cauchy deviates.

Keywords: complex system, probability of failure, interval uncertainty.

1 Formulation of the Problem

It is necessary to estimate the probability of failure for complex systems. In many
practical applications, we need to estimate the probability of failure of a complex
system. The need for such estimates comes from the fact that in practice, while
it is desirable to minimize risk, it is not possible to completely eliminate it: no
matter how many precautions we take, there are always some very low proba-
bility events that can potentially lead to a system’s failure. All we can do is to

make sure that the resulting probability of failure does not exceed the desired
small value p0. For example, the probability of a catastrophic event is usually
required to be at or below p0 = 10−9.

In aircraft design and maintenance, we need to estimate the probability of a
failure of an aircraft as a whole and of its subsystems. At the design stage, the
purpose of this estimate is to make sure that this probability of failure does not
exceed the allowed probability p0. At the maintenance stage, this estimate helps
to decide whether a maintenance is needed: if the probability of failure exceeds
p0, some maintenance is required to bring this probability down to the desired
level p0 (or below).

Information available for estimating system’s probability of failure: general de-
scription. Complex systems consist of subsystems, which, in turn, consist of
components (or maybe of sub-subsystems which consist of components). So, to
estimate the probability of failure of a complex system, we need to take into
account when the failure of components and subsystems lead to the failure of
the complex system as a whole, and how reliable are these components and
subsystems.

From the failure of components and subsystems to the failure of the complex
system as a whole. Complex systems are usually built with redundancy allowing
them to withstand the failure of a small number of components. Usually, we
know the structure of the system, and, as a result, for each possible set of failed
components, we can tell whether this set will lead to a system failure. So, in this
paper, we will assume that this information is available.

How reliable are components and subsystems? What do we know about the reli-
ability of individual components? For each component A, there is a probability
P (A) of its failure. When we have a sufficient statistics of failures of this type of
components, we can estimate this probability as the relative frequency of cases
when the component failed. Sometimes, we have a large number of such cases,
and as a result, the frequency provides a good approximation to the desired
probability – so that, in practice, we can safely assume that we know the actual
values of these probabilities P (A).

If only a few failure cases are available, it is not possible to get an accurate
estimate for P (A). In this case, the only information that we can extract from
the observation is the interval P(A) = [P (A), P (A)] that contains the actual
(unknown) value of this probability.

This situation is rather typical for aircraft design and maintenance, because
aircrafts are usually built of highly reliable components – at least the important
parts of the aircraft are built of such components – and there are thus very few
observed cases of failure of these components.

Component failures are independent events. In many practical situations, failures
of different components are caused by different factors. For example, for an air-
craft, possible failures of mechanical subsystems can be caused by the material
fatigue, while possible failures of electronic systems can be caused by the in-
terference of atmospheric electricity (e.g., when flying close to a thunderstorm).

In this paper, we assume that failures of different components are independent
events.

What we do in this paper. Our objective is to use all this information to estimate
the probability of failure of the entire complex system. In this paper, we describe
a new method for such estimation.

Comment. In this paper, we assumed that failures of different components are
independent events. Sometimes, we know that the failures of different compo-
nents are caused by a common cause; corresponding algorithms are described,
e.g., in [1,2,3,8].

2 Simplest Case: Component Failures Are Independent
and Failure Probabilities P (A) Are Exactly Known

Let us start our analysis with the simplest case when the component failures are
independent and the failure probabilities P (A) for different components A are
known exactly. As we mentioned, we assume that there exist efficient algorithms
that, given a list of failed components, determines whether the whole system
fails or not. In this case, it is always possible to efficiently estimate the probabil-
ity P of the system’s failure by using Monte-Carlo simulations. Specifically, we
select the number of simulations N . Then, for each component A, we simulate a
Boolean variable failing(A) which is true with probability P (A) and false with
the remaining probability 1−P (A). This can be done, e.g., if we take the result
r of a standard random number generator that generates values uniformly dis-
tributed on the interval [0, 1] and select failing(A) to be true if r ≤ P (A) and
false otherwise: then the probability of this variable to be true is exactly P (A).

Then, we apply the above-mentioned algorithm to the simulated values of
the variables failing(A) and conclude whether for this simulation, the system
fails or not. As an estimate for the probability of the system’s failure, we then

take the ratio p
def
= f/N , where f is the number of simulations on which the

system failed. From statistics, it is known that the mean value of this ratio is
indeed the desired probability, that the standard deviation can be estimated
as σ =

√
p · (1 − p)/N ≤ 0.5/

√
N , and that for sufficiently large N (due to

the Central Limit Theorem), the distribution of the difference P − p is close to
normal. Thus, with probability 99.9%, the actual value P is within the three-
sigma interval [p − 3σ, p + 3σ].

This enables us to determine how many iterations we need to estimate the
probability P with accuracy 10% (and certainty 99.9%): due to σ ≤ 0.5/

√
N , to

guarantee that 3σ ≤ 0.1, it is sufficient to select N for which 3 · 0.5/
√

N ≤ 0.1,
i.e.,

√
N ≥ (3 · 0.5)/0.1 = 15 and N ≥ 225. It is important to emphasize that

this number of iterations is the same no matter how many components we have
– and for complex systems, we usually have many thousands of components.

Similarly, to estimate this probability with accuracy 1%, we need N = 22, 500
iterations, etc. These numbers of iterations work for all possible values P . In
practical applications, the desired probability P is small, so 1 − P ≈ 1, σ ≈

√
P/N and the number of iterations, as determined by the condition 3σ ≤ 0.1

or 3σ ≤ 0.01, is much smaller: N ≥ 900 ·P for accuracy 10% and N ≥ 90, 000 ·P
for accuracy 1%.

Comment. In many cases, there are also efficient analytical algorithms for com-
puting the desired probability of the system’s failure; see, e.g., [4,5,6,16].

3 Important Subcase of the Simplest Case: When
Components Are Very Reliable

In many practical applications (e.g., in important subsystems related to air-
crafts), components are highly reliable, and their probabilities of failure P (A)
are very small. In this case, the above Monte-Carlo technique for computing
the probability P of the system’s failure requires a large number of simulations,
because otherwise, with high probability, in all simulations, all the components
will be simulated as working properly.

For example, if the probability of a component’s failure is P (A) = 10−3, then
we need at least a thousand iteration to catch a case when this component fails;
if P (A) = 10−6, we need at least a million iterations, etc.

In such situations, Monte-Carlo simulations may take a lot of computation
time. In some applications, e.g., on the stage of an aircraft design, it may be
OK, but in other cases, e.g., on the stage of routine aircraft maintenance, the
airlines want fast turnaround, and any speed up is highly welcome.

To speed up such simulations, we can use a re-scaling idea; see, e.g., [8,10].
Specifically, instead of using the original values P (A), we use re-scaled (larger)
values λ · P (A) for some λ ≫ 1. The value λ is chosen in such a way that the
resulting probabilities are larger and thus, require fewer simulations to come up
with cases when some components fail. As a result of applying the above Monte-
Carlo simulations to these new probabilities λ · P (A), we get a probability of
failure P (λ).

In this case, one can show that while the resulting probabilities λ · P (A) are
still small, the probability P (λ) depends on λ as P (λ) ≈ λk ·P for some positive
integer k.

Thus, to find the desired value P , we repeat this procedure for two different
values λ1 6= λ2, get the two values P (λ1) and P (λ2), and then find both unknown
k and P from the resulting system of two equations with two unknowns: P (λ1) ≈
λk

1 · P and P (λ2) ≈ λk
2 · P .

To solve this system, we first divide the first equation by the second one,
getting an equation P (λ1)/P (λ2) ≈ (λ1/λ2)

k with one unknown k, and find
k ≈ ln(P (λ1)/P (λ2))/(λ1/λ2). Then, once we know k, we can find P as P ≈
P (λ1)/λk

1 .

4 Monotonicity Case

Let us start with the simplest subcase when the dependence of the system’s
failure is monotonic with respect to the failure of components. To be precise,

we assume that if for a certain list of failed components, the system fails, it will
still fail if we add one more components to the list of failed ones. In this case,
the smaller the probability of failure P (A) for each component A, the smaller
the probability P that the system as a whole will fail. Similarly, the larger the
probability of failure P (A) for each component A, the larger the probability P
that the system as a whole will fail.

Thus, to compute the smallest possible value P of the failure probability, it is
sufficient to consider the values P (A). Similarly, to compute the largest possible
value P of the failure probability, it is sufficient to consider the values P (A).
Thus, in the monotonic case, to compute the range [P , P] of possible values of
overall failure probability under interval uncertainty, it is sufficient to solve two
problems in each of which we know probabilities with certainty:

– to compute P , we assume that for each component A, the failure probability
is equal to P (A);

– to compute P , we assume that for each component A, the failure probability
is equal to P (A).

5 In Practice, the Dependence Is Sometimes
Non-monotonic

In some practically reasonable situations, the dependence of the system’s failure
on the failure of components is non-monotonic; see, e.g., [8]. This may sound
counter-intuitive at first glance: adding one more failing component to the list of
failed ones suddenly makes the previously failing system recover, but here is an
example when exactly this seemingly counter-intuitive behavior makes perfect
sense. Please note that this example is over-simplified: its only purpose is to
explain, in intuitive terms, the need to consider non-monotonic case.

To increase reliability, systems include duplication: for many important func-
tions, there is a duplicate subsystem ready to take charge if the main subsystem
fails. How do we detect that the main system failed? Usually, a subsystem con-
tains several sensors; sensors sometimes fail, as a result of which their signal no
longer reflect the actual value of the quantity they are supposed to measure. For
example, a temperature sensor which is supposed to generate a signal propor-
tional to the temperature, if failed, produces no signal at all, which the system
will naturally interpret as a 0 temperature. To detect the sensor failure, subsys-
tems often use statistical criteria. For example, for each sensor i, we usually know
the mean mi and the standard deviation σi of the corresponding quantity. When
these quantities are independent and approximately normally distributed, then,

for the measurement values xi, the sum X2 def
=

n∑
i=1

(xi − mi)
2

σ2
i

is the sum of n

standard normal distributions and thus, follows the chi-square distributed with
n degrees of freedom. So, if the actual value of this sum exceeds the threshold
corresponding to confidence level p = 0.05, this means that we can confidently
conclude that some of the sensors are malfunctioning. If the number n of sensors

is large, then one malfunctioning sensor may not increase the sum X2 too high,
and so, its malfunctioning will not be detected, and the system will fail. On the
other hand, if all n sensors fail, e.g., show 0 instead of the correct temperature,
each term in the sum will be large, the sum will exceed the threshold – and
the system will detect the malfunctioning. In this case, the second redundant
subsystem will be activated, and the system as a whole will thus continue to
function normally.

This is exactly the case of non-monotonicity: when only one sensor fails, the
system as a whole fails; however, if, in addition to the originally failed sensor,
many other sensors fail, the system as a whole becomes functioning well. Other
examples of non-monotonicity can be due to the fact that some components may
be in more than two states [9].

In the following text, we will consider the non-monotonic case, in which a
simple algorithm (given above) is not applicable.

6 A Practically Important Case When Dependence May
Be Non-monotonic but Intervals Are Narrow: Towards
a New Algorithm

General non-monotonic case: a possible algorithm. For each component A, by
using the formula of full probability, we can represent the probability P of the
system’s failure as follows:

P = P (A) · P (F |A) + (1 − P (A)) · P (F |¬A),

where P (F |A) is the conditional probability that the system fails under the
condition that the component A fails, and P (F |¬A) is the conditional probability
that the system fails under the condition that the component A does not fail.
The conditional probabilities P (F |A) and P (F |¬A) do not depend on P (A),
so the resulting dependence of P on P (A) is linear. A linear function attains
it minimum and maximum at the endpoints. Thus, to find P and P , it is not
necessary to consider all possible values P (A) ∈ [P (A), P (A)], it is sufficient to
only consider two values: P (A) = P (A) and P (A) = P (A).

For each of these two values, for another component A′, we have two possible
options P (A′) = P (A′) and P (A′) = P (A′); thus, in this case, we need to
consider 2 × 2 = 4 possible combinations of values P (A) and P (A′).

In general, when we have k components A1, . . . , Ak, it is sufficient to con-
sider 2k possible combinations of values P (Ai) and P (Ai) corresponding to each
of these components. This procedure requires times which grows as 2k. As we
mentioned earlier, when k is large, the needed computation time becomes unre-
alistically large.

Natural question. The fact that the above algorithm requires unrealistic expo-
nential time raises a natural question: is it because our algorithm is inefficient
or is it because the problem itself is difficult?

The problem is NP-hard. In the general case, when no assumption is made about
monotonicity, the problem is as follows:

– Let F be a propositional formula with n variables Ai

– for each variable Ai, we know the interval [P (Ai), P (Ai)] that contains the
actual (unknown) P (Ai) that this variable is true;

– we assume that the Boolean variables are independent.

Different values P (Ai) ∈ [P (Ai), P (Ai)] lead, in general, to different values of
the probability P that F is true (e.g., that the system fails). Our objective is to
compute the range [P , P] of possible values of this probability.

In [8], we have proven that, in general, the problem of computing the desired
range [P , P] is NP-hard. From the practical viewpoint, this means, that (unless
P=NP, which most computer scientists believe to be not true), there is no hope
to avoid non-feasible exponential time. Since we cannot have a feasible algorithm
that is applicable to all possible cases of the general problem, we therefore need
to restrict ourselves to practically important cases – and try to design efficient
algorithms that work for these cases. This is what we do in this paper.

A practically important case of narrow intervals. When there is enough informa-
tion, the intervals [P (A), P (A)] are narrow. If we represent them in the form

[P̃ (A) − ∆(A), P̃ (A) + ∆(A)],

with P̃ (A) =
P (A) + P (A)

2
and ∆(A) =

P (A) − P (A)

2
, then values ∆(A) are

small, so we can safely ignore terms which are quadratic or of higher order in
terms of ∆P (A).

Linearization: analysis of the problem. In the case of narrow intervals, the dif-

ference ∆P (A)
def
= P (A) − P̃ (A) is bounded by ∆(A) and thus, also small:

|∆P (A)| ≤ ∆(A). Hence, we can expand the dependence of the desired system

failure probability P = P (P (A), . . .) = P (P̃ (A) + ∆P (A), . . .) into Taylor series

and keep only terms which are linear in ∆P (A): P ≈ P̃ +
∑
A

cA ·∆P (A), where

P̃
def
= P (P̃ (A), . . .) and cA

def
=

∂

∂P (A)
P (P̃ (A), . . .).

For those A for which cA ≥ 0, the largest value of the sum
∑
A

cA · ∆P (A)

(when ∆P (A) ∈ [−∆(A), ∆(A)]) is attained when ∆P (A) attains its largest
possible value ∆(A). Similarly, when cA < 0, the largest possible values of the
sum is attained when ∆P (A) = −∆(A). In both cases, the largest possible value
of the term cA · ∆P (A) is |cA| · ∆(A). Thus, the largest possible value of P is

equal to P̃ + ∆, where

∆
def
=

∑

A

|cA| · ∆(A).

Similarly, one can show that the smallest possible value of P is equal to P̃ − ∆,
so the range of possible values of the failure probability P is [P̃ − ∆, P̃ + ∆].

We already know how to compute P̃ – e.g., we can use the Monte-Carlo
approach. How can we compute ∆?

How to compute ∆: numerical differentiation and its limitations. A natural idea
is to compute all the partial derivatives cA and to use the above formula for ∆.
By definition, cA is the derivative, i.e.,

cA = lim
h→0

P (P̃ (A) + h, P̃ (B), P̃ (C), . . .) − P (P̃ (A), P̃ (B), P̃ (C), . . .)

h
.

By definition of the limit, this means that to get a good approximation for cA,
we can take a small h and compute

cA =
P (P̃ (A) + h, P̃ (B), P̃ (C), . . .) − P (P̃ (A), P̃ (B), P̃ (C), . . .)

h
.

This approach to computing derivatives is called numerical differentiation.
The problem with this approach is that each computation of the value

P (P̃ (A) + h, P̃ (B), P̃ (C), . . .) by Monte-Carlo techniques requires a lot of simu-
lations, and we need to repeat these simulations again and again as many times
as there are components. For an aircraft, with thousands of components, the re-
sulting increase in computation time is huge. Moreover, since we are interested
in the difference P (P̃ (A) + h, . . .)− P (P̃ (A), . . .) between the two probabilities,
we need to compute each of these probabilities with a high accuracy, so that this
difference would be visible in comparison with the approximation error ∼ 1/

√
N

of the Monte-Carlo estimates. This requires that we further increase the number
of iterations N in each Monte-Carlo simulation and thus, even further increase
the computation time.

Cauchy deviate techniques: reminder. In order to compute the value∑
A

|cA| · ∆(A) faster, one may use a technique based on Cauchy distributions

(e.g., [12,15]) , i.e., probability distributions with probability density of the form

ρ(z) =
∆

π · (z2 + ∆2)
; the value ∆ is called the scale parameter of this distribu-

tion, or simply a parameter, for short.
Cauchy distribution has the following property: if zA corresponding to differ-

ent A are independent random variables, and each zA is distributed accord-
ing to the Cauchy law with parameter ∆(A), then their linear combination
z =

∑
A

cA · zA is also distributed according to a Cauchy law, with a scale param-

eter ∆ =
∑
A

|cA| · ∆(A).

Therefore, using Cauchy distributed random variables δA with parameters
∆(A), the difference

c
def
= P (P̃ (A) + δA, P̃ (B) + δB, . . .) − P (P̃ (A), P̃ (B), . . .) =

∑

A

cA · δA

is Cauchy distributed with the desired parameter ∆. So, repeating this exper-
iment Nc times, we get Nc values c(1), . . . , c(Nc) which are Cauchy distributed
with the unknown parameter, and from them we can estimate ∆. The bigger
Nc, the better estimates we get.

Comment. To avoid confusion, we should emphasize that the use of Cauchy
distributions is a computational technique, not an assumption about the actual
distribution: indeed, we know that the actual value of ∆P (A) is bounded by
∆(A), but for a Cauchy distribution, there is a positive probability that the
simulated value is larger than ∆(A).

Cauchy techniques: towards implementation. In order to implement the above
idea, we need to answer the following two questions:

– how to simulate the Cauchy distribution;
– how to estimate the parameter ∆ of this distribution from a finite sample.

Simulation can be based on the functional transformation of uniformly dis-
tributed sample values: δA = ∆(A) · tan(π · (rA − 0.5)), where rA is uniformly
distributed on the interval [0, 1].

In order to estimate ∆, we can apply the Maximum Likelihood Method

ρ(c(1)) · ρ(c(2)) · . . . · ρ(c(Nc)) → max,

where ρ(z) is a Cauchy distribution density with the unknown ∆. When we
substitute the above-given formula for ρ(z) and equate the derivative of the
product with respect to ∆ to 0 (since it is a maximum), we get an equation

1

1 +

(
c(1)

∆

)2 + . . . +
1

1 +

(
c(Nc)

∆

)2 =
Nc

2
.

Its left-hand side is an increasing function that is equal to 0(< Nc/2) for ∆ = 0
and > Nc/2 for ∆ = max

∣∣c(k)
∣∣; therefore the solution to this equation can be

found by applying a bisection method to the interval
[
0, max

∣∣c(k)
∣∣].

It is important to mention that we assumed that the function P is reasonably
linear when the values δA are small: |δA| ≤ ∆(A). However, the simulated values
δA may be larger than ∆(A). When we get such values, we do not use the original
function P for them, we use a normalized function that is equal to P within the
given intervals, and that is extended linearly for all other values; we will see, in
the description of an algorithm, how this is done.

Cauchy deviate technique: main algorithm

– Apply P to the values P̃ (A) and compute P̃ = P (P̃ (A), P̃ (B), . . .).
– For k = 1, 2, . . . , Nc, repeat the following:

• use the standard random number generator to compute n numbers r
(k)
A

that are uniformly distributed on the interval [0, 1];

• compute Cauchy distributed values c
(k)
A = tan(π · (r(k)

A − 0.5));

• compute the largest value of |c(k)
A | so that we will be able to normalize

the simulated measurement errors and apply P to the values that are

within the box of possible values: K = max
A

|c(k)
A |;

• compute the simulated measurement errors δ
(k)
A := ∆(A) · c(k)

A /K;

• compute the simulated probabilities P (k)(A) = P̃ (A) + δ
(k)
A ;

• estimate P (P (k)(A), P (k)(B), . . .) and then compute

c(k) = K · (P (P (k)(A), P (k)(B), . . .) − P̃);

– Compute ∆ by applying the bisection method to solve the corresponding
equation.

Resulting gain and remaining limitation. By using the Monte-Carlo techniques,
we make sure that the number of iterations Nc depends only on the accuracy
with which we want to find the result and not on the number of components.
Thus, when we have a large number of components, this method is faster than
numerical differentiation.

The computation time of the new algorithm is smaller, but it is still not very
fast. The reason is that the Cauchy method was originally was designed for sit-
uations in which we can compute the exact value of P (P (k)(A), P (k)(B), . . .).
In our problem, these values have to be computed by using Monte-Carlo tech-
niques, and computed accurately – and each such computation requires a lot of
iterations. Instead of running the maximum likelihood, we can also just estimate
∆ by means of the sample interquartile range instead of solving the non-linear
equation. But this method will be less accurate.

Final idea to further decrease the needed number of simulations. (see, e.g., Section
5.4 of [15]) For each combination of values δA, the corresponding Monte-Carlo

simulation produces not the actual probability P (P̃ (A) + δA, P̃ (B) + δB, . . .),

but an approximate value P̃ (P̃ (A)+ δA, P̃ (B)+ δB, . . .) = P (P̃ (A)+ δA, P̃ (B)+
δB, . . .) + cn that differs from the desired probability by a random variable cn

which is normally distributed with mean 0 and variance σ2 =
P̃ · (1 − P̃)

N
.

As a result, the difference c
def
= P̃ (P̃ (A) + δA, P̃ (B) + δB, . . .) − P̃ between

the two observed probabilities can be represented as c = cc + cn, where

cc
def
= P (P̃ (A) + δA, P̃ (B) + δB, . . .) − P̃ is, as we have mentioned, Cauchy dis-

tributed with parameter ∆, while

cn = P̃ (P̃ (A) + δA, P̃ (B) + δB, . . .) − P (P̃ (A) + δA, P̃ (B) + δB, . . .)

is normally distributed with mean 0 and known standard deviation σ.
The components cc and cn are independent. Thus, for c = cc + cn, for the

characteristic function χ(ω)
def
= E[exp(i · ω · c)], we have

E[exp(i ·ω ·c)] = E[exp(i ·ω ·cc) ·exp(i ·ω ·cn)] = E[exp(i ·ω ·cc)] ·E[exp(i ·ω ·cn)],

i.e., χ(ω) = χc(ω) ·χn(ω), where χc(ω) and χn(ω) are characteristic functions of
cc and cn. For Cauchy distribution and for the normal distribution, the charac-
teristic functions are known: χc(ω) = exp(−|ω| ·∆) and χn(ω) = exp(−ω2 · σ2).
So, we conclude that χ(ω) = exp(−|ω| ·∆−ω2 · σ2). Hence, to determine ∆, we
can estimate χ(ω), compute its negative logarithm, and then compute ∆ (see
the formula below).

Since the value χ(ω) is real, it is sufficient to consider only the real part
cos(. . .) of the complex exponent exp(i · . . .). Thus, we arrive at the following
algorithm:

Algorithm. First, we use a lengthy Monte-Carlo simulation to compute the value.
P̃ = P (P̃ (A), P̃ (B), . . .). Then, for k = 1, 2, . . . , N , we repeat the following:

– use a random number generator to compute n numbers r
(k)
A , that are uni-

formly distributed on the interval [0, 1];

– compute δ
(k)
A = ∆i · tan(π · (r(k)

A − 0.5));
– use Monte-Carlo simulations to find the frequency (probability estimate)

P̃ (P̃ (A) + δ
(k)
A , P̃ (B) + δ

(k)
B , . . .) and then

c(k) = P̃ (P̃ (A) + δ
(k)
A , P̃ (B) + δ

(k)
B , . . .) − P̃ ;

– for a real number ω > 0, compute χ(ω) =
1

N
·

N∑

k=1

cos
(
ω · c(k)

)
;

– compute ∆ = − ln(χ(ω))

ω
− σ2 · ω

2
.

Comment. Of course, we also need, as before, to “reduce” the simulated values
δA to the given bounds ∆(A).

7 Conclusion

In this paper we considered the problem of estimating the probability of fail-
ure P of a complex system such as an aircraft, assuming we only know upper
and lower bounds of probabilities of elementary events such as component fail-
ures. The assumptions in this paper is that failures of different components are
independent events, and that there is enough information to ensure narrow prob-
ability intervals. The problem of finding the resulting range [P , P] of possible
values of P is computationally difficult (NP-hard). In this paper, for the prac-
tically important case of narrow intervals [P (A), P (A)], we propose an efficient
method that uses Cauchy deviates to estimate the desired range [P , P]. Future
works concern the estimation of intervals [P (A), P (A)] from the imprecise knowl-
edge of failure rates. Moreover, it is interesting to study what can be done in
practice when the independence assumption on component failures no longer
holds.

Acknowledgments. C. Jacob was supported by a grant from @MOST Proto-
type, a joint project of Airbus, LAAS-CNRS, ONERA, and ISAE. V. Kreinovich
was supported by the Nat’l Science Foundation grants HRD-0734825 and DUE-
0926721 and by Grant 1 T36 GM078000-01 from the Nat’l Institutes of Health.
We are thankful to the anonymous referees for valuable suggestions.

References

1. Ceberio, M., et al.: Interval-type and affine arithmetic-type techniques for han-
dling uncertainty in expert systems. Journal of Computational and Applied
Mathematics 199(2), 403–410 (2007)

2. Chopra, S.: Affine arithmetic-type techniques for handling uncertainty in expert
systems, Master’s thesis, Department of Computer Science, University of Texas at
El Paso (2005)

3. Chopra, S.: Affine arithmetic-type techniques for handling uncertainty in expert
systems. International Journal of Intelligent Technologies and Applied Statis-
tics 1(1), 59–110 (2008)

4. Dutuit, Y., Rauzy, A.: Approximate estimation of system reliability via fault trees.
Reliability Engineering and System Safety 87(2), 163–172 (2005)

5. Flage, R., et al.: Handling of epistemic uncertainties in fault tree analysis: a compar-
ison between probabilistic, possibilistic, and hybrid approaches. In: Bris, S., Guedes
Sares, C., Martorell, S. (eds.) Proc. European Safety and Reliability Conf. Relia-
bility, Risk and Safety: Theory and Applications, ESREL 2009, Prague, September
7-10, 2009 (2010)

6. Guth, M.A.: A probability foundation for vagueness and imprecision in fault tree
analysis. IEEE Transations on Reliability 40(5), 563–570 (1991)

7. Interval computations website, http://www.cs.utep.edu/interval-comp
8. Jacob, C., et al.: Estimating probability of failure of a complex system based on

partial information about subsystems and components, with potential applications
to aircraft maintenance. In: Proc. Int’l Workshop on Soft Computing Applications
and Knowledge Discovery SCAKD 2011, Moscow, Russia, June 25 (2011)

9. Jacob, C., Dubois, D., Cardoso, J.: Uncertainty Handling in Quantitative BDD-
Based Fault-Tree Analysis by Interval Computation. In: Benferhat, S., Grant, J.
(eds.) SUM 2011. LNCS, vol. 6929, pp. 205–218. Springer, Heidelberg (2011)

10. Jaksurat, P., et al.: Probabilistic approach to trust: ideas, algorithms, and simu-
lations. In: Proceedings of the Fifth International Conference on Intelligent Tech-
nologies InTech 2004, Houston, Texas, December 2-4 (2004)

11. Jaulin, L., et al.: Applied Interval Analysis. Springer, London (2001)
12. Kreinovich, V., Ferson, S.: A new Cauchy-based black-box technique for uncer-

tainty in risk analysis. Reliability Engineering and Systems Safety 85(1-3), 267–279
(2004)

13. Kreinovich, V., et al.: Computational Complexity and Feasibility of Data Process-
ing and Interval Computations. Kluwer, Dordrecht (1997)

14. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM
Press, Philadelphia (2009)

15. Trejo, R., Kreinovich, V.: Error estimations for indirect measurements: randomized
vs. deterministic algorithms for ‘black-box’ programs. In: Rajasekaran, S., et al.
(eds.) Handbook on Randomized Computing, pp. 673–729. Kluwer (2001)

16. Troffaes, M., Coolen, F.: On the use of the imprecise Dirichlet model with fault
trees. In: Proceedings of the Mathematical Methods in Reliability Conference,
Glasgow (July 2007)

17. Walley, P.: Statistical reasoning with imprecise probabilities. Chapman & Hall,
New York (1991)

