19,528 research outputs found

    Impact on multilayered composite plates

    Get PDF
    Stress wave propagation in a multilayer composite plate due to impact was examined by means of the anisotropic elasticity theory. The plate was modelled as a number of identical anisotropic layers and the approximate plate theory of Mindlin was then applied to each layer to obtain a set of difference-differential equations of motion. Dispersion relations for harmonic waves and correction factors were found. The governing equations were reduced to difference equations via integral transforms. With given impact boundary conditions these equations were solved for an arbitrary number of layers in the plate and the transient propagation of waves was calculated by means of a Fast Fourier Transform algorithm. The multilayered plate problem was extended to examine the effect of damping layers present between two elastic layers. A reduction of the interlaminar normal stress was significant when the thickness of damping layer was increased but the effect was mostly due to the softness of the damping layer. Finally, the problem of a composite plate with a crack on the interlaminar boundary was formulated

    Impact of composite plates: Analysis of stresses and forces

    Get PDF
    The foreign object damage resistance of composite fan blades was studied. Edge impact stresses in an anisotropic plate were first calculated incorporating a constrained layer damping model. It is shown that a very thin damping layer can dramatically decrease the maximum normal impact stresses. A multilayer model of a composite plate is then presented which allows computation of the interlaminar normal and shear stresses. Results are presented for the stresses due to a line impact load normal to the plane of a composite plate. It is shown that significant interlaminar tensile stresses can develop during impact. A computer code was developed for this problem using the fast Fourier transform. A marker and cell computer code were also used to investigate the hydrodynamic impact of a fluid slug against a wall or turbine blade. Application of fluid modeling of bird impact is reviewed

    Reentrant Melting of Soliton Lattice Phase in Bilayer Quantum Hall System

    Full text link
    At large parallel magnetic field B∄B_\parallel, the ground state of bilayer quantum Hall system forms uniform soliton lattice phase. The soliton lattice will melt due to the proliferation of unbound dislocations at certain finite temperature leading to the Kosterlitz-Thouless (KT) melting. We calculate the KT phase boundary by numerically solving the newly developed set of Bethe ansatz equations, which fully take into account the thermal fluctuations of soliton walls. We predict that within certain ranges of B∄B_\parallel, the soliton lattice will melt at TKTT_{\rm KT}. Interestingly enough, as temperature decreases, it melts at certain temperature lower than TKTT_{\rm KT} exhibiting the reentrant behaviour of the soliton liquid phase.Comment: 11 pages, 2 figure

    Theory of Microwave Parametric Down Conversion and Squeezing Using Circuit QED

    Full text link
    We study theoretically the parametric down conversion and squeezing of microwaves using cavity quantum electrodynamics of a superconducting Cooper pair box (CPB) qubit located inside a transmission line resonator. The non-linear susceptibility \chi_2 describing three-wave mixing can be tuned by dc gate voltage applied to the CPB and vanishes by symmetry at the charge degeneracy point. We show that the coherent coupling of different cavity modes through the qubit can generate a squeezed state. Based on parameters realized in recent successful circuit QED experiments, squeezing of 95% ~ 13dB below the vacuum noise level should be readily achievable.Comment: 4 pages, accepted for publication in Phys. Rev. Let

    Preliminary Results from the Caltech Core-Collapse Project (CCCP)

    Get PDF
    We present preliminary results from the Caltech Core-Collapse Project (CCCP), a large observational program focused on the study of core-collapse SNe. Uniform, high-quality NIR and optical photometry and multi-epoch optical spectroscopy have been obtained using the 200'' Hale and robotic 60'' telescopes at Palomar, for a sample of 50 nearby core-collapse SNe. The combination of both well-sampled optical light curves and multi-epoch spectroscopy will enable spectroscopically and photometrically based subtype definitions to be disentangled from each other. Multi-epoch spectroscopy is crucial to identify transition events that evolve among subtypes with time. The CCCP SN sample includes every core-collapse SN discovered between July 2004 and September 2005 that was visible from Palomar, found shortly (< 30 days) after explosion (based on available pre-explosion photometry), and closer than ~120 Mpc. This complete sample allows, for the first time, a study of core-collapse SNe as a population, rather than as individual events. Here, we present the full CCCP SN sample and show exemplary data collected. We analyze available data for the first ~1/3 of the sample and determine the subtypes of 13 SNe II based on both light curve shapes and spectroscopy. We discuss the relative SN II subtype fractions in the context of associating SN subtypes with specific progenitor stars.Comment: To appear in the proceedings of the meeting "The Multicoloured Landscape of Compact Objects and their Explosive Origins", Cefalu, Italy, June 2006, to be published by AIP, Eds. L. Burderi et a

    Use and Implications of BovineSomatotropin for the Wisconsin Dairy Sector in the 1990s

    Get PDF
    Seven years have passed since the U.S. government approved the commercial use of recombinant bovine somatotropin (rBST), a synthetic relative of a naturally-occurring growth hormone that stimulates milk production in cows. Prior to approval, national controversy over rBST, more popularly known as BGH (bovine growth hormone), raged for almost a decade (Barham, 1996). Opponents and proponents alike envisioned rBST as a juggernaut technology, one that would change the dairy industry in dramatic ways, first and foremost by substantially raising herd productivity and overall milk production and then perhaps by driving away consumers from dairy products. With these concerns in mind, opponents also believed that rBST’s effects would drive tens of thousands of (smaller-scale) dairy farmers out of business by both depressing milk prices and rendering small-scale producers less competitive. Meanwhile, proponents hailed the technology as a valuable management tool for improving herd performance and the efficiency of dairy farms of any scale. At the peak of the controversy, the U.S. Congress debated whether to overturn the Food and Drug Administration’s approval, and the Senate demanded a special, full-length report by the Office of Management and Budget (1994) assessing the potential impacts of rBST on the U.S. dairy industry and society. Given the intensity of the debate in the early 1990s, it is noteworthy that rBST’s seventh anniversary as a commercial product passed with hardly a mention from any of the erstwhile protagonists, even in Wisconsin which had been at the center of the national tempest. These “after-the-storm” conditions reflect the fact that markets and regulations shaping rBST use have been relatively stable for several years now, with most demand-side uncertainties surrounding U.S. consumer reaction largely dissipated, at least for the time being. Instead of chaos and disruption, what emerged quickly in Wisconsin, and in some other major dairy producing states (including California and Minnesota), were segmented markets for fluid milk as well as for some processed products (cheeses, soft products, etc.). These market niches have held steady or perhaps receded in certain instances. Generally, retailers and processors, respectively, use signs above the dairy case and product labels to signal to consumers the availability of dairy products from cows not treated with rBST. For dairy farmers, this marketplace stability means that rBST adoption decisions are now probably based on their own adoption preferences, production strategies, other farm-level factors, and the local presence (or lack of) segmented markets for dairy products rather than uncertainties about consumer reaction

    Strong Correlation to Weak Correlation Phase Transition in Bilayer Quantum Hall Systems

    Get PDF
    At small layer separations, the ground state of a nu=1 bilayer quantum Hall system exhibits spontaneous interlayer phase coherence and has a charged-excitation gap E_g. The evolution of this state with increasing layer separation d has been a matter of controversy. In this letter we report on small system exact diagonalization calculations which suggest that a single phase transition, likely of first order, separates coherent incompressible (E_g >0) states with strong interlayer correlations from incoherent compressible states with weak interlayer correlations. We find a dependence of the phase boundary on d and interlayer tunneling amplitude that is in very good agreement with recent experiments.Comment: 4 pages, 4 figures included, version to appear in Phys. Rev. Let

    Sub-monolayer nucleation and growth of complex oxide heterostructures at high supersaturation and rapid flux modulation

    Full text link
    We report on the non-trivial nanoscale kinetics of the deposition of novel complex oxide heterostructures composed of a unit-cell thick correlated metal LaNiO3 and dielectric LaAlO3. The multilayers demonstrate exceptionally good crystallinity and surface morphology maintained over the large number of layers, as confirmed by AFM, RHEED, and synchrotron X-ray diffraction. To elucidate the physics behind the growth, the temperature of the substrate and the deposition rate were varied over a wide range and the results were treated in the framework of a two-layer model. These results are of fundamental importance for synthesis of new phases of complex oxide heterostructures.Comment: 13 pages, 6 figure
    • 

    corecore