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At small layer separations, the ground state of a n � 1 bilayer quantum Hall system exhibits sponta-
neous interlayer phase coherence. The evolution of this state with increasing layer separation d has been
a matter of controversy. We report on small system exact diagonalization calculations which suggest
that a single-phase transition, likely of first order, separates incompressible states with strong interlayer
correlations from compressible states with weak interlayer correlations. We find a dependence of the
phase boundary on d and interlayer tunneling amplitude that is in very good agreement with recent
experiments.
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The ground state of a two-dimensional monolayer elec-
tron system at Landau level filling factor n � 1 is a single
Slater determinant described exactly by Hartree-Fock the-
ory and is a strong ferromagnet with a large gap Eg for
charged excitations [1,2]. This elementary property has
rich and interesting consequences for the physics of bilayer
quantum Hall systems at the same total n, consequences
that are readily appreciated when a pseudospin language
[1,3] is used to describe the layer degree of freedom. When
the layer separation d goes to zero, interactions between
layers are identical to interactions within layers. The pseu-
dospin bilayer Hamiltonian is then identical to the single
layer Hamiltonian with spin and its ground state has pseu-
dospin order and a finite charge gap. For infinite layer
separation, on the other hand, the bilayer system reduces to
two disordered, compressible, uncorrelated n � 1�2 sys-
tems. This Letter concerns the evolution of bilayer quan-
tum Hall systems between these two extremes.

For small layer separations the difference between in-
terlayer and intralayer interactions breaks the pseudospin
invariance of the Hamiltonian, resulting in an incom-
pressible easy-plane pseudospin ferromagnet. In physical
terms the pseudospin order represents spontaneous phase
coherence between the electron layers. Several scenarios
have been proposed for the evolution of the ground state
as the layer separation increases further. In Hartree-Fock
theory [4], spontaneous interlayer coherence is lost if the
layer separation exceeds a critical value, and the ground
state at large separations consists of weakly correlated
Wigner crystals. While possibly instructive, this picture is
known to be incorrect at large d since half-filled Landau
levels do not have crystalline ground states. Working
in the other direction, Bonesteel et al. started [5] from
the composite fermion theory of isolated compressible
n � 1�2 layers, and concluded that coupling would lead
to pairing between composite fermions in opposite layers
and also, implicitly, to a charge gap. Since the pseu-
dospin ferromagnet possesses particle-hole rather than
particle-particle pairing, however, this picture still implies
that at least one phase transition occurs as a function of
layer separation. In a numerical diagonalization study He
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et al. [6] predicted, on the basis of the system parameter
dependence of overlaps between exact ground states and
two different variational wave functions, the existence of
two distinct incompressible states separated by a region
of compressible states.

Experiments, on the other hand, have tended to be con-
sistent [7] with the proposal [3] that a single-phase transi-
tion from an incompressible to a compressible state occurs
with increasing layer separation at any value of the inter-
layer tunneling amplitude. Very recently, in an intriguing
new experiment by Spielman et al. [8], the tunneling con-
ductance across the layers was studied in a sample with ex-
tremely small tunneling amplitude. When the ratio of layer
separation and magnetic length was lowered (at fixed fill-
ing factor) below a critical value, the conductance showed
a very pronounced peak around zero bias voltage between
the layers that provides direct evidence [9] for spontaneous
interlayer phase coherence. This is because in the coher-
ent state the layer index is uncertain. Only in this case
can tunneling leave the system in or near its ground state,
avoiding the orthogonality catastrophe and allowing tun-
neling to occur near zero voltage.

Since the critical layer separation found by Spielman
et al. is close to the one obtained earlier by Murphy
et al. for the onset of the quantum Hall effect [7], experi-
ment demonstrates that for vanishing tunneling amplitude
the phase transitions at which pseudospin order and the
charge gap are lost are either closely spaced or coincident.

In this Letter we report on small system exact diago-
nalization calculations which strongly suggest that bilayer
quantum Hall systems have a single-phase transition, likely
of first order, as a function of d. Our critical layer sepa-
ration is in very good quantitative agreement with the
value measured in Ref. [8]. In the light of the experimen-
tal results mentioned above, our calculations imply that
the charge gap disappears and long-range phase coherence
simultaneously drops sharply to near zero at the phase
transition. This result is not entirely unexpected since a
simple Landau-Ginzburg analysis indicates that the two
order parameters could not vanish simultaneously without
fine-tuning, if the transition were continuous. Also the
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mean-field theory energy gap is proportional to the pseu-
dospin order parameter, suggesting that these two orders
are mutually reinforcing and that a first order transition is
therefore likely. Finally, we note that, experimentally, the
charge gap phase transition is sharp even at finite tunneling
between the layers. Since tunneling produces a pseudo-
magnetic field which couples to the pseudospin order pa-
rameter, this is an unusual magnetic transition which does
not involve symmetry breaking, a fact which lends further
weight to the suggestion that the transition is first order.

We analyze bilayer quantum Hall systems numerically
by means of exact diagonalizations of finite systems using
the spherical geometry. We have verified numerically that
the ground state and low-lying excitations are fully spin
polarized and neglect the spin degree of freedom in the
present discussion. The Hamiltonian is given by

H � H1P 1 HCoul , (1)

where HCoul represents the usual Coulomb interaction
within and between layers, and the single-particle Ham-
iltonian H1P is given by

H1P � 2
1
2

X

m
c1

m,m�Dytz
m,m0 1 Dtt

x
m,m0�cm0,m . (2)

We concentrate here on the tunneling amplitude (Dt) tuned
phase transition, although bias voltage (Dy) dependence
is also interesting and often experimentally more conve-
nient. m, m0 [ �1, 2� run over the layer (or pseudospin)
indices and a summation convention is implicit; �t are
the pseudospin Pauli matrices. m [ �2Nf�2, . . . , Nf�2�
is the z projection of the orbital angular momentum of
each electron in the lowest Landau level, where Nf is
the number of flux quanta penetrating the sphere. In the
following we denote the pseudospin operators by �T �
�1�2�

P
m c1

m,m �tm,m0cm0,m. The interlayer separation d is
measured in units of the magnetic length lB �

p
h̄c�eB,

and all energies are given in units of the Coulomb energy
scale e2�elB. We consider the case of zero well width
to enable comparison with most previous theoretical in-
vestigations [10–13], and also systems consisting of two
rectangular wells of finite width w [14] whose ratio to the
center-to-center layer separation d is w�d � 0.65. This
value corresponds to the sample used in Ref. [8].

We consider systems with an even electron number N
which leads to a nondegenerate spatially homogeneous
ground state with total angular momentum L � 0. For
simplicity, let us first examine the case of vanishing bias
voltage, where both �Ty	 and �Tz	 are strictly zero.

Figure 1 shows the interlayer phase coherence as mea-
sured by the expectation value �Tx	 along with the fluc-
tuation DTx �

p
�Tx2 	 2 �Tx	 �Tx	 as a function of the

tunneling gap for a system of 12 electrons, a layer separa-
tion of d � 1.80, and zero well width. At Dt � 0, �Tx	
is necessarily zero in a finite system. With increasing tun-
neling gap, �Tx	 grows rapidly reaching an inflection point
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FIG. 1. The pseudospin expectation value �Tx	 and the fluctua-
tion DTx as a function of the tunneling gap Dt . The derivative
d�Tx	�dDt [measured in units of 1��e2�elB�] is shown in the
inset.

with a very steep tangent. The differential pseudospin
susceptibility, x � �1�N� �Tx	�dDt , is plotted in the in-
set and shows a very pronounced peak. In the immediate
vicinity of this peak, the pseudospin fluctuation DTx has
also a pronounced maximum. In Fig. 2 the x is plotted for
different numbers of electrons.

The rapid growth with increasing system size of the peak
in this generically intensive quantity is strong evidence
for a ground state phase transition. Analogous findings
are obtained for the peak in the pseudospin fluctuation.
Thus, the peaks in the susceptibility of the pseudospin and
its fluctuation grow very rapidly with increasing system
size and signal a quantum phase transition at the critical
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FIG. 2. The pseudospin susceptibility x for different system
sizes as a function of the tunneling gap. The rapidly growing
peak indicates a quantum phase transition.
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value of the tunneling gap. At large tunneling the system
pseudospin magnetization is close to its maximum value,
while at small (but also finite) tunneling the system is
disordered and the pseudospin magnetization is strongly
reduced by interactions.

The two peaks described above occur at extremely
nearby values of Dt at a given layer separation d, and
we consider the very tiny differences in their location as
a finite-size effect. To estimate the phase diagram of the
system we place the phase boundary at the maximum of
the quantum fluctuations DTx .

Figure 3 shows the resulting phase boundaries for dif-
ferent system sizes and both cases of well width. At small
layer separation the system is in the ordered phase and the
fluctuation peak occurs exactly at Dt � 0. At a critical
layer separation dc�Dt � 0, N� the phase boundary moves
out rapidly to finite values of Dt and intersects the axis
Dt � 0 with an almost horizontal tangent. This is in quali-
tative agreement with earlier experimental [7] and theoreti-
cal [3] estimates of the phase diagram.

The critical values dc�Dt � 0, N� form a rapidly
converging data sequence and are plotted in Fig. 4. These
finite-size data are accurately and consistently described
by an ansatz of the form dc�N� � a 1 bN2l with two
fit parameters a � dc�N � `�, b, and a shift exponent
l. The best fits to both sets of data are obtained for
l � 5.0 6 0.2 leading to a value of dc�N � `� �
1.30 6 0.03 for zero well width, and dc�N � `� �
1.81 6 0.03 for w�d � 0.65. The latter value is in
excellent agreement with the results of Ref. [8], where
the onset of the tunneling conductance peak is observed
at a layer separation of d � 1.83. Thus, our numerical
results clearly indicate that the findings of the above
tunneling experiments are the signature of a quantum
phase transition. The very large value of l seems incon-
sistent with a diverging correlation length and suggests
the transition is first order. A first order phase transition
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FIG. 3. Phase boundaries for different system sizes N and ra-
tios of well width to layer separation.
would explain the apparent coincidence of the appearance
of spontaneous phase coherence and the quantum Hall
effect in experiment [7,8]. We note that our result for the
critical layer separation at vanishing tunneling gap agrees
reasonably, at zero well width, with the point at which
the uniform density phase coherent state first becomes
unstable in the Hartree-Fock approximation [3]. At larger
w, however, the Hartree-Fock estimates clearly deviate
from the exact diagonalization result.

In order to further investigate the order of the quantum
phase transition, we introduce the ratio

vN �
2�DTx�2

N

�d�Tx	�dDt�N
, (3)

where the subscript N refers to the system size. As we
discuss below, this type of ratio should prove to be a pow-
erful general tool in the analysis of any quantum phase
transition. In classical physics this ratio of fluctuation to
susceptibility is equal to the thermal energy kBT and van-
ishes at T � 0. The classical relationship does not ap-
ply here since the Hamiltonian fails to commute with its
derivative with respect to Dt . There is, however, a closely
related zero-temperature relationship with the typical exci-
tation energy vN taking over the role of temperature. The
fluctuation can be written as

�DTx�2 �
X

n.0

j�njTxj0	j2, (4)

where the sum is performed over all excited states, while
for the derivative of the pseudospin magnetization one
finds from linear response theory

d�Tx	
dDt

� 2
X

n.0

j�njTxj0	j2

En 2 E0
. (5)
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FIG. 4. The critical layer separation dc�Dt � 0, N� (filled
symbols) at vanishing tunneling as a function of the system size
N for both cases of well width. The lines are finite-size fits to
the data with a shift exponent of l � 5.0.
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From these equations we see that vN is a harmonic average
of excitation energies �En 2 E0�, weighted by the factors
j�njTxj0	j2. In particular, vN has a vanishing thermody-
namic limit if at least one state with a nonvanishing ma-
trix element �njTxj0	 has an excitation energy �En 2 E0�
which extrapolates to zero for N ! `. Thus, Eq. (3) de-
fines a characteristic energy scale of the system at the phase
boundary. The operator Tx naturally enters this expression
since it couples to a control parameter driving the phase
transition.

For a continuous phase transition one would clearly ex-
pect vN to vanish at the phase boundary for an infinite
system, while a finite limit limN!` vN is indicative of a
finite energy scale, i.e., a first order transition. From our
finite-size data for vN [evaluated at vanishing tunneling
and d � dc�N�] we conclude that this quantity extrapo-
lates for N ! ` to a rather substantial nonzero value of
order 0.05e2�elB 
 5 K for both values of w considered
here. Along with the arguments and experimental findings
given so far, this result strongly suggests that the bilayer
quantum Hall system at filling factor n � 1 undergoes a
single first order phase transition as a function of the ra-
tio of layer separation and magnetic length at all values of
the tunneling amplitude. The phase boundary separates a
phase with strong interlayer correlation (and a finite gap
for charged excitations) from a phase with weak interlayer
correlations and vanishing Eg.

Finally we comment briefly on the influence of a bias
voltage between the layers. When applying a bias voltage
to the system the vector � �T 	 is tilted out of the xy plane with
a finite z component. In this case we find numerically that
the quantum phase transition is again signaled by the longi-
tudinal fluctuation of the pseudospin magnetization and its
susceptibility, and all results concerning the phase bound-
ary are qualitatively the same. This agrees with experi-
mental results by Sawada et al., who found a remarkable
stability of the n � 1 quantum Hall state against a finite
bias voltage, as compared to the behavior at other filling
factors [15]. First order phase transitions from strongly
correlated to weakly correlated states also occur with in-
creasing bias potential. We predict measurable anomalies
in the double-layer system capacitance at bias tuned phase
transitions.
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