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Summery

This is the final report on the theoretical studies of impact
of composite plates completed by the principal investigator at Prince-
ton University. Previous reports under this grant have presented analyses
and computer codes for the calculation of stresses in compogite plates due
to centrel and edge impact of hard cbjects. These studies were directed
toward the problem of foreign object damage in jet engine fan blades. The
present report is directed toward three separate problems related to foreign
object demege in composite plate like structures. These are; the effective-
ness of constrained layer damping for leading edge impact protection; the
development of multilayer mathematical models to calculate interlaminar
stresses due to impact of composite piates; and a review of fluid modell~
ing techniques for predicting impact stresses and forces due to bird im-
pact.
Part I - Constrained Layer Dsmping of Impact Stresses.

'n a previous report an analytical-computational code was developed
to predict the stre.ses due to the in plane edge impact of an enisotropic
plate. This code ineluded provision for an elestic protection strip to
be placed between the impact force and the half plane of the plate. In
the present report this code is modified to include a viscoelastic layer
between the elastic protection strip end the comporite plate. Similar
technigques for demping plate vibrations have proved very successful.

Numerical results show that a very thin elastomer demping layer may signi-

ficantly reduce the normal impact stresses in the plate. The results are

based on a modification of the plate-protection strip boundary condition.

Since the code uses the fast Fourier transform, experimentelly determined,



frequency dependant material constants for the elastomer can be included.
Part II -~ tilayer Model for Impact of Composite Plates.

In earlier studies by the principal investigator, the central impact
of composite plate was modelled using a plate theory that included linear
bending and shear displacements and a single transverse displacement vari-
able which effectively neglected wave propagation through the thickness of
the plate. TIn the present report higher order inertia variaebles are in-
cluded. In addition the plate is broken down into ¢ set of identieal
orthotropic layers. Each layer mey represent meuy plys or in specialized
cages & single ply of the composite plate. Incorporation of these two
features results in a model that can predict interlaminar sheasr and nor-
mal stresses as well as wave propagation through the thickness direction.
Results for the line impact of a two layer plate show an interlaminar ten-
sion developing under the load after impact. The computer code which
solves finite difference equations for a periodic set of oscillators can
handle any number of layers.

Part IIT - Dynamics of Bird Impact.

Prediction of impact stresses in composite fan blades not only depends on
the structural modelling but on an accurate kmowledge of the force be-
tween the foreign object and the structure. In the finel section of this
report methods for predicting the forces generated during a bird impact
with & solid well sre investigated. The physical properities of birds
as related to impact are reviewed. Simple Hertz Impact caleulations for
bone and composite materials show that the skeletal bones of birds will
disintegrate under impact suggesting that a fluld model for impaci might
be useful for high speed impact greater than 50 m/s. A brief nurvey of

the literature of rein drop impact and computatlional fluid mechanics is

2
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presented. A marker and cell hydrodynamic code is used to calculate
pressurer and force history between a flat plate and viscous incompres-
sible fluld of eylindrical and spherical shape. Both normal and oblique
impact are studied. The pressure and force histories show a fluetuation
behevior suggesting either real or computational instabilities in the
code. Velocity distributions show the development of an eddy effect
near the wall and a subsequent stationary zone of liquid near the plate.
This leads to & fairly uniform pressure dist.ibution across the contact

area between the fluid and the wall.



PART 1

Edge Impact of a Plate With Constrained Leyer Damping

by
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Part I - Edge Impact of a Plate With Constrained Layer Damping.

To prevent failure of composite fen blades under impact forces,
leading edge protection strips have been emplcyed. In practice strips
of stainless steel are wrapped sround the leading edge of the blade.

The effect of the strip is to thwart the force of impact, thereby spread-
ing the normal impact stresses over a large area of the composite ma-
terial underneath the sirip.

In a previous repoirt we developed an analytical model for edge im-~
pact of a composite plate with edge protection {3]. In #his model the com~
posite plate was treated as a homogeneous anisotropic elestic material
and the edge protection modelled as a beam which is conmected to the edge.
The results of that study showe? that the edge strip could decrease both
the normal and edge wise impact stresses at the surface but that signifi-
cant shear stress could develop at the bond between the edge strip and
the plate. The calculations were carried out for in-plane impact loads.

The edge protection strip is only effective to the extert that it
spreads the transient impact loading over a surface along the plate edge
larger than the impect contact area. Also it disperses the pulse so that
the impact energy to the plate is spread out in time, hence decreasing
fhe peak stresses.

In contrast to the energy dispersion method of decreasing impact
stresse: the dissipation method uses damping materiesl to convert the im-
pact energy into heat instead of into kinetic and rtored elastic energy
in the plate. There are two approaches to the absorbtion of structural vi-

bration ih beams end plates. In one method a highly viscoelastic material

6



is simply connected to one face of the besm or plate. Energy is cenverted
to hest in the viscoelastic layer through normal stresses. This method
hes been used to quiet the vibration of submarines. This method contrasts
with the constreined layer method in which the energy 1s dissipated through
chesr stresses. This is accomplished by cementing a soft visccelastic
meterial to the plate and covering the damping layer with & stiff elastic
meterial (see Pigure 1 ). Thus the viscous laeyer it constrained tetween
two elastic plates, hence the name, In practice the viscoelastic sublayer
is a thin high damping elastomer while the constraining plate can be a
thin plate of sluminum or steel. This method has been studied both ex-
perimentally snd analytically for vibratory motion by Yan (4 ] and Yan

and Dcwell [5 1.

Tt is proposed to use such a method for the absorbtion of transient
impact vibrations of composite fan bledes by placing a thin elastomer
material between the leading edge protection strip and the composite
blade material

Tn this section a model is proposed to examine the energy absorbing
poteuntial of such a concept for the edge impact of an anisotropic helf space.
The model is shown in Figure 2 . Between the anisotropic half space and
the edge protection strip we assume a thin layer of viscoelastic material
which has a uniform normal strain in the Xq direction €33 and an aver-
age shearing strain 713. The inertis of the layer is neglected as well
as bending moments. Thus the stiesses t33, and t13 are transmitted
from the beam to the half space unperturbed. However the compalitility
conditions between the beam displacements U, W and the plate edge dis-
placements Uy, Uy are changed.

Ir €33 is the uniform strein in the sublayer at position Xy and 4
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the thickness of this layer, then the relation between u3and W is given by
- = =1}

Further if @ d1s the change in angle of a line element normal to the

damping layer (see Figure 2), then the relation between Wy end U is given by

Ueuw = =os—=-0ad (1~-2)

However, the.angle & is not the total shearing strain. At the center

of the damping layer we take the average shearing strain to be

73 = tO+ ai—l(u3-€33d/2) (1-3)

Finally to find 533, 713 we use the viscoelastic constitutive rela.

tions between the strains and +t for the sublayer. e also neglect

33* Ya3

the strain e in the sublayer. Thus for the laplace transformed vari-

11

ables where s = iw we have

€ = t.. = [} -
53 = g/t , %g = £ /6() (1-1)
where Y(w), G(®) are complex functions of the frequency w, snd ,, and
t,, are neglected in (I-4).

The stresses % and + are related to the surface displacements

33 13
of the helf space Uy u3 through constitutive equations for the plate

and the displacements must satisfy the wave equations in the plate. To
find the displacements and stresses in the composite plate, we follow

the same procedure as the no-stiip case except for the boundary condi-
tions on the edge. In place of the zerc stress conditions on the edge we

8



relate the edge stresses t33, tl3 to the motion of the beam strip. If
one considers a small element of the beam-strip along the xy direction,

the momentum balance equations in the x » X, directions become, (for a

1773

plate of unit thickness)

aau aEU
pb == = Eb == 4 ¢ (1-5)
Bte axi 13
b L ot
3w 3w > b %13 -
b 2R - _ Er +Ib + 2 +t. . + p g
32 S;’f Paka? 2 ¥ T3 o

1 x3 displecements of the beanm

element at the half thickness, and t33, t13 are the interface stresses.

In these equations U, v are the x

The compatibility condition between the beam and plate displacements
W and uy are given by (I-1) and the condition between U, and u, is
given by (I-9.

In the above equations b is the depth of the strip, E, I, Ip are
respectively the Young's modulus, moment of inertia and rotary inertia.
Also pof(t)g(xl) is the edge loading applied to the outer protective
strip surface.

The equations for the plate remain as 'n the free edge case [ 3]
and a solution is obtaeined by taking a Laplace transform on time and s

Fourier transform on the space variable X - With nondimensionalization

the solution in the plate has the form

u 1 1
I— 1 =P, X ~P X,
e 13 4+ C s

lh_ = & a e (1-6)



where Dy, D, e&nd ¥3q ¢32 are given by the following equat.ions (u

indicates a FPourlier and Lepiace transformed variable).

h 2 2 2 2,.2
det = c + [0, (=8 +C - +xE
et = Cyalgep + [Cggl-e-Cyy K Oy (57 =Cogley Mk (G 5+Co5) I
(I-7)
2 2 2
+ (S +Cllkl)(s +055 l) = 0
where the C are the equivalent elastic constants for the anisotropic

1d

plate. We will choose the p's with positive real parts to insure
the decay in x3 direction of the surface wave. ILet the solutions be

P = PPy therefore, we have

2 2
(1} (l) 1[-3 '-C.Ilkl'l'csﬁpl] ,1)
P = iy = C (x,,8) o) = = N = ¥,-C -
Py 1\*y2 ’» Do kP, (Cp o+ Cos) i 3171 (I-8)
_ (2) _ (2) _ il 'Cllklfcsspa (2)

The equations of motion for the beam (1-5a,b), are next transformed
using a Laplace transform on time snd a Fourier Transform on the space

voriable X,- When the solutions for along with the constraint

., ﬁ3,
conditions for W, U are substituted into the bending and extensional

equations of motion for the beam, and the constitutive equations (I-4),

used to eleminate the stresses t33, t we obbaln two equations
for the unknown constants Cl’ C,a in (I-6). These equations can be
put into the form.

7 1

ﬁ_ Hl C1 RE

= pf2 (1~9)
G
6, Ha b
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To define the terms Gl’ G., Hl’ I-I2 we use bthe = mbol 8 for the
=8 -
Laplace transform variable and k for the Fourier transform variable

where

Fk,e) = [Pl t)e tar o gy

-0 O

Then using the following symbols

va, = -IkLF+Ipbk282+pb52]
by, = [Ebk2+pb52] ,
the matrix elements in (7.9 are given by
G, (Pys¥q,) = v == Co(iky ) - (ikeC, ,~C )(1+dAl
1\P1a¥3p) = DAy, - 2 Co5{ikbyy-py 13-C33P1¥31 ) (1+ 3757)
G, (Dys¥ay) = bA(L+ 2Ry Y - ¢ (iky,. -p,) (1-10)
o (Ppo¥gy Ao 5 Vg3 55 k¥4 =Py I-
ikb
+ bad [—(—-)-(c 3plw3l ﬂccl3)+11r(¢3l m[cwm -C 3pl\}«.])
q o (ik )
T 8(s) Cs5t 1Py
and where

When the thickness of the viscous layer is set equal %o zero,

i.e. d = O, then one obtains the solution for an anisotropic plate with
11



with & beam glued to the edge. When the beam thickness is set to zero,
i.e. b = 0, then the free edge plate is obtained. These two cases were
studied in Reference [ 3].

To ottain solutions in the time domain for a pulsed imput fg the
expressions for u, GB must be inverted. This was accomplished using
a double fast Pourier transform as described in a previous report [ 2].
In the example choosen a specific elastomer was chosen . whcse vigcoelastic
properties were known. The material choosen was an elastomer made by the
Dupont Corp., LR3-604. This material was used by Yan in his disserta-
tion [ 4] and the numerical values of ¥(s) and G(s) were obtained
from date in Yen's thesis. This data is shown in Figures 3,4. The shear

—

modulus can be represented in the form

G(s) = G(iw) g' (o) + 1 ¢"(w)

n

¢ (i ¢"/g") .

The expression for G'(®w) can be represented by a cubic function of
log(w/2x). The vatio G"/G' 4is known as the loss tangent and for the
particular temperature chosen can be approximated as a bilinear functicn
of log(w/eﬂ). Thus for each freguency component in the Fourier inversion
of the solution the corresponding value of G(s) was used.

Results of calculations for a specific case are shown in Figures 5,6
The plate material is a + 15 degree layup angle graphite/epoxy composite.
The paraboliec loading length is a = 2 cm and the steel beam strip thick-
ness is b = 0.5 cm. The contact time in this cxemple is 35 usec. Flot-

ted in Figure 5 is the maximum normal stress at the plate interface t33/p

versus the pormelized thickness of the shear subleyer d/a. One cen see

1z



thet while the str:ss rises for very small values of d/s, the normal
impact stress decreased drematically for elamstomer thicknesses less then
20% of the impact half length.

Figure 6 shows results for the edgewise stress + The maximum

11’
edgewlse stress without the beam is about 4.8 P, from the study of Ref. 3
and with the beam glued to the edge is 1.1 p- Adding a damping sublayer
appears to increase the stress for d/a < 0.15 and the limit as d/a -+ 0
does not eppear to result in the zero sublayer case. This is believed
due to the fact that the shear modulus for the sublayer is many orders

of magnitude below that of the composite or the besm. Thus the sublayer

acts as & zero shesr stress boundary condition. To check this we ran a case

for d/s = O but the shear condition for the beam set to ty3 = 0 while
maintaining continuity of normal stress and displacement. This can be
accomplished in the computer model by setting AE = 0 in equation (I-10).
The result of this calculation leadsto a meximm tll = 3.73 P, for
the same loading conditions and plate material as the cases above. This

value appears to be the limiting value for d/a ~ 0 and explains the

apparent paradox.

13
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PART II

Multi-Layer Model For Wave Propagation in Composite Pletec Due to Impact

by
F.C. Moon and B.S. Kim
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Part II - Multi-Layer Model For Wave Propagation in Compeosgite Plates

Section 1. Introduction

In our previous reports on wave propagation in composite plates [1], [2]
the multiply plate wes modeled by inclusion of linear bending end shear
displacement across the thickness and a single transverse displacement
varieble for the midplane. This model is a modified Timoshenko plate
using a procedure for obtaining approximate plate theories from the equa-
tions of elasticity developed by Mindlin [6 ]. This simplified model as-
sumes that the wavelengths of the impact foreing function are equel to or
greater than the thickness of the plate. It is further limited in that it
cannot treat wave propagation through the thickness of the plate and predict
damage phenomensa such es spalling.

A number of researchers have presented models for a multi-laeyer com-
pusite plate. Many,however,have stopped short of the transient impact
problem end have examined only the frequency-wavelength dispersion rela-
tion for wave propagetion in the plate [ 7 ]-{12]. In this report we pre-
sent enother attempt to mathematically model the multilayer plate but will
develop a method wherein propagation through the plate thickness cen be handled and
transier ; impact stresses can be calculated using an inexpensive fast Fourier
algorithm on the digital computer.

The composite plate is reprecented by N layers; each layer may contain a

number of plys (Fig.7). Each layer is treated as orthotropic with the symmetry

axes of all the layers alligned. For alternating ply composites each layer
should bontain two or more plys. The model can be extended to include the

case of the layer symmetry axes at angles to each other but will not be rew
ported here. A key assumption is that all the layers are identical. While

restricting the application, this assumption sllows us to formmlate the problem

16
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using difference-differential equations. The technique of periodic
shtructures has been used in the study of electrical transmission lines
[13] and in the vibration of multistory buildings [l&g. A set of equa~
tions of motion is developed for & typical layer. The relative motion
of one layer to snother is relested by a phase shift. In this way the
number of layers can be increased without increasing the slze of the
matrices to be inverted to satisfy the boundary conditions.

The model incorporates the interlayer stresses as explicit variables.
Through these stresses we hope to extend the analysis to the study of im-
pact of composite plates with viscoelastle damping layers and with cracks.
Such studles are now underwey. In the results presented in this report
only the line impact has been treated. This has simplified the calcula=-
tions end seved computer time in testing out the model. The technique
however can be extended to the two dimensional or central impact problem.
The next sections will describe the model in Jetail and discuss the numer-

jcal results.

Section 2. Formulation
Basic Theory of Linear Anisotropic Elasticity. Cauchy's equations of motion

in cartesian tensor form are

2= pu

Y11 3

(11-1)

t = tji

where body forces are neglected and the stress tensor is related to the

infinitesimal strain tenscr eij by

- I1-2
byy = Cogesfue (I1-2)

17
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or in a condensed form this ig often written as

The elastic moduli Ci k4 or 13 has the following form for orthotropic
materinls
r- -
c 012 013 0 0 0
012 022 023 0 0 0
0 o 0
®i3 %3
Cyy = (11-k4)
0 0 0 Cb,lt 0 0
0 0 0 0 055 0
| 0 0 0 0 0 066 _‘

Anglysis of alayer. For a layer shown in Fig. 7 we employ the approximsate

plate theory of Mindlin [6 ] and the displacement field u is expanded
in terms of the Legendre polynomlals as

o0

wx),%,,%5,t) = nfo g(n)(xl,xyt)Pn(n) (1I-5)
where 17 1is the local coordinste along thickness and normelized by b
(b; & half of layer thickness).
Instead of solving Eq.II-l directly we obtain new epproximate
equations of motion by a variationel process and integration over the

thickness 7. The result is

1l t(n) 2

™ (Po(n)tyy 10y - 55 =

. ugn)(&lﬁ) (11-6)

18
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where

1 {0) f;P (n)t..dn
aj 3 nlad

13dP (q)
(n) _ ;nMV
tej _-1 an tejd'q

By substituting the constitutive relation (II-0)with the displacement
expansion (TI-5) into the above approximate equations of motion, we can
find governing equations of motion in terms of u:{O), u(O), u(o), u{l)...

2 3
The accuracy of the theory depends on how many terms of the dise
placement field we retain. Since the complexity in formulation increases
rapldly with the number of terms included we keep terms only up to second
order. Furthemore we will only exemine harmonic waves propagating along

i . (n)
the x, direction so thet we can drop ug terms and have 3-—{ } =o0.

Next to get rid of the undesired coupling with higher modes we set

U{E) = uée) = 0. Then the resulting equations are

2b(C, iOil Bcleu(1)) N (t 45 - Ebpii§o)

2b Cyq (3 “{l) uE(O]).l) + (Eht70) = 2neil”)

hb 11u§1%1 512" égi) . + “éo)) + (tel toy) = % bpﬁil)
O Leniil) - 2(oy Tt e+ (thyony) = 5 wei

(£~ 2(C12u§}i+ %Cezuéa)) = 0

6y =ty) - 2(Cegn 10 2o, )y - o

(11-8)
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Here we notice that the first, fourth and last equations are written
in terms of u(n)i where (n+i) is an odd integer and represent the
thickness stretching motion (or symmetric motion) 1In the rest of the
equations in which (n+i) is an even integer, the u's represent flexual
motion (or antisymmetric motion). Hence this process has decoupled the
stretching motion from bending motion.

To get rid of the 2nd order modes from Eq. (IX-8) we solve the
last two equetions for uéa) and 1L_|(_2) s 8nd insert them into the remain-
ing four equations and drop the propagation of uél) along x direc-
tion which is equivalent to dropring Ex_l(tel 21) in the last equation.

Then eq. (II-8) can be reduced as follows:

Eb(cllu:f.og.l Jeuéln).) + (tht5) = 2veii”)

1 (1),.(0) _ - (0)
2b Coe (g uy 34y 9q) + (tha=tsp) = 2veil;
(11-9)
(1)
C,.b
2ta (1) o (0) 127, + 2 . ..(1)
Foa,1 - WO+ D+ _3022( po~top)ey + (829+65;) = 5 beily
) 1 {1) + (1)
- \W)
2(Cpuy, 1% 00 ) * (bppttyy) = 5 ebu;
where
2

¢ c 12

13 11 022
Section 3. Wave Propagation
Harmonic Waves. Let's consider now a harmonic wave propagating in the
Xy direction. Namely une solutions for u, and.t are written as

1 (kx, -wt) 1 (ko -wt)

E:(n) = g(n)e 1 3 t = Te ! (11-10)
20 Ri AueitiLITY OF THE

0L *N:L PAGE IS POOR



ol

T

In view of the Legendre polynomical expansion the displacements on the

both sides of a layer can be written as

0.

W= u£0)tu{1) 3N o= t1l
(I1-11)
= = uéo):tuél) 3 o= 1
and the displacement w and v can also be gilven as
1 (Jex, -wt)
W e kxl
(11-12)
i(kx. <ot)
v = Ve 1
If we svbstitute Equs. (II-10,11,12) into Eq. (II-9) we find
(cll +0 )(w+w )+c i (VT-v") + (T -13'2) = 0
-, in(WHw™) + -1—(-30 '2)(v V) + B(TF +T" ) = 0
12 3 22 Tpo
(11-13)
Copln (W 7) + (=Coen™ &) (VHV7) + b(Th, 13 ) = 0
}-( &, x23c +c32)(w+ W) ik (Vi) + 12 i b(T ) + (T )
Fi=Cpyx =3Cg W)= el 3T, “Tap 21tTp) =

where ° and x are defined by

R
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e sbove eqguation is the final form of governing equation written in terms
of wave number, frequency and amplitudes of displacements on both sides of

a layer.

Plate Anelysis. Remembering that above analysis is for any arbitrary

layer in a plate, say the nth layer, equation (II-13) cen be immediately

written as & set of difference equetions, [15],

(-cuue«;&‘q)(wnmn_l) + O ARV, 3) + (et ) = O
-C ie(W W L)+ l(-';sc +£x32)(v v ) +{g+g. ,) = ©
12 n n-1 3 22 n n-l n n=1’ =
(II-15)
Cssiﬂ(wn-wn-l) + (-066n2-H32)(Vn+Vn_1) + (Un-cn_l) = 0

Cc
1, ~ 2 -2 . 12 . .
5('°11“ =3Cg* )(wn-wn-l) - 0661K(vn+vn-l) + 3Gy, ln(ﬂh-oh-l) + (Tn+Tn-1) =0

vhere we replaced bTEl =T &and bT22 = g. Here we notice that the con=-
tinuity conditions in displacements and stresses &Cross the boundary be=-

tween layers are identically satisfied by these difference equations.

Dispersion Reletionship. For a plate made of W layers, in general, Eq.

(I1-15) gives 4N equations written in termscof 4(N+1) variables (Wo,vo,
To,ob,wl,vl,-.-,TN,dN)- Boundary conditions drop 4 veriables among them
so thet UN unknowns can be determined by 4N homogenecus equations vhen
the determinant of coefficient matrix vanishes, which provides the desired

dispersion relationship between freguency o, and wave length 2n/k.
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One layer Flate The dispersion relationship for a plate made of one

lcyer (ms shown in Fig. 8) can be found by setting N = 1 in Eq. (15) with

corresponding boundary conditions, i.e. O =Tg =0y =Ty = 0 and the

resulting equations are now written in matrix form as follows:

[~ = "
2. -2 . (
(~Cqqn” e ), Cppik 0 0 rw1+wo ow
1 e
-Cy ix -3-(-3022+w ) 0 0 < A & -< 0
. 2 -2
0 0 Cogin ("066" +07) Wy o}
1, 4 2 Pl
L 0 0 g(-vuu -3C, 40 )s -Cggln QU L° J
(11-16)
Then by setting the coefficlent metrix zero we obtaln the dispersion
reletions as
2 2 1 -2 2 =2
Cp® - i(-SCEQﬂn )(-C;ln +H) = 0
(II-17)

Cg6n2 - %(-611n2-3c66+ﬁ?)(- C66n2+52) = 0
Here we notice that the first recltionship corresponds to the state of
deformation of Wl = Wo and V1 =-Vo, which correspond to thickness
extension of the plate or the symmetric mode, and the second describes
the flexual deformatlon or antisymmetric mode. The exact theory of plate
glves an infinite number of dispersion relations but since we only
kept inertis effects up to lst order for b.th components of displacement,
we have only the first four dispersion relavionships.

Dispersion relationshims and corresponding phase veloclities for an

isotropic material with Poisson's ratio 1/4 (namelr A = u) are given in

N

L
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Fig. 9a and b. Relationships for a 55% graphite fiber-epoxy matrix composite
with layup angle 0° and 45° are shown in Fig. 10a, b and 1la, b. Note Lere
that médified frequency & and phase velocity ¢ are normalized agalin by
Cgg: From these figures we clearly see that u'.\l /x (or cl) approachs the
limit Jéu/CGG which is the dilatation wave speed in case of an isotropic
plate and quasi-diletation for anisotropic plate when the wave mumber
beccmes large (or the wave length becomes small compaered wlth the layer
thickness b). Also notice that &, /x (or ch), which for kb << 1 is

8 bending wave approaches a shear wave for b >> 1 . Fig. 1lla and b show
the effect of anistbropy on the dispersion relationships and 1he wave speeds
of the dilatation (and quesidilatat ion) waves when the layup angle changes
from 0° to 90° (see Table II).

Iso-laver Plats- 1In this case we obtain 8 equations by putting n = 0 and

1 in (II-15). The boundary conditions reguire To=95=Tg=0,=0 (see
Figure 8). The 8 equations sre written for 8 unknowns (WO,VD,W +Vys7Tq5 cl,wa,va)
and again by following the ssme procedure as in one-layer caze we find the

dispersion relations as

C
3 (&) ¥230, 000704 226 W) [-CiRP (@0 ®) (30,488 )+ (@P-0pe))

-(&a-c X ){c ——@ 2("“-066u 3} = 0

A

g™ (~30p5#8 ) = (B ~Cegr®) (30,17 (o0 ®) K-8y, Puseg )
+ 3((32-(:66&2)(:‘1?2!!2 = 0

Dispersion relationships for the isotropic plate and ar’ - ropic plate
2k



-

e r A R TR e . TR T IR PR L T

with layup engle 0° and L45° ave plotted in Fig.13a,b,1lka,bh, and 15a,b.

N-Leyer Plate. In general, we can obtain a 2(N+1l) order polynomial of

f

na by expanding & (4N) x (4N) determinant and find 2(W1) dispersion
relations. But wnfortunately this process involves considerscly compli-
cated algebra and it mey be necessary to develop a computer technique to
find roots of an equation in determinant form (not in polynomisl form).

A difference equation mpproach can be used to solve the N set of
four simultaneous first order difference equation given by Eq. (II-15).
This proceedure is neet and can be generalized for any number of layers
but the last step of this approach, where a long polynomisl is to be solved

again, is not simpler than previocus direct method.



Section 4.- Difference Equetion Approach for Impact Problem

Solutions of Difference Equetions. Since the simultanious difference egua~

tions given by Eq. (II-15) are linear and all the coefficients are constants,

we can try the following form for their solution [15]

_ 2ifin
™ = Ae
Un = B 92151'1
(11-19)
Wn = c eEiﬁn
_ 2iBn
Vn = De
where £ 1is complex, in genersal. By substitution of these solutions
into Eq. (II-15) we have
[~ Y )
(-Cllrc2+u-32)cost3, ~C,, ksing, 0 i sinp C 0
2 -2 F
~Cgg ksing, (-066 T4 YeosB, i sinB 0 D >
{ >= ( >(II-20)
O
i 2 -2y . s 12
§( =Cyq K =3CgeHa0 YsinB, ~CgeircosB, - 3—05-2- ksinB, cosP A 0
- Clei keosB, i(-3022+c'132)sin,8 » cosB, 0 B 0
e 3 J\ k J

Agein 1T we set the value of the determinant zero we find the follown

ing equations for B8, & and x .

26
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alcosuﬁ + aesinEBcosaﬁs + aSSinhB = 0 (1I-21)

{
[
)

)‘ 8‘1 = ( -Cll I'EE‘HI)E ) (-066 K2'|'CI)2 )
i
% a, =%+%r%ﬂmn-%§%£
| % 2
; &y = -—37( -3022+w )
o = (=05, F(=Cyy ) (-30,,+5))
ag = {"026 Ke"l" :_3L"( ~ All K2 -3066‘*‘(7)2 ) (-066 KE'HT.)E ) ]
¢.,C
ay = (-1 3050 e :;;?:266 ¢
2
2 -2, %1
@, = [066+(-C66K-HD—)§EEE k)

Then we cen find 4 values of B(say & Bl(-i-B) and 18, (£ o)) with given

wlues of © eand . Accordingly solutions given by (II-19) can be write

ten as
2iBn «~2ifn 2iom -2iom
T, = Ae + Aze + A3e + Ahe
2iPn -2iBn 2iocn -2ion
o’n = Ble + Bae + B3 + B1+“
(IT-02)
_ 2ifn, ~-2ifn 2icom ~2iom
Wn = Cle Cae + C3B + Ch
_ 2ifn =23ifn z2iom -2ictm
Vn = Dle + Dee + D3 + Dhe
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Next when we substitute these soluticns to our original difference equations we

can find the relationships hetween A 3! Bi’ C i and Di « The boundsry

conditions on the top and tottom faces of the plate require celculation

of v and o, and they are given by

n

o, = Bleeiﬁn + Bee-ziﬁn + ]33esEiom + Bue'2ic>£n
(II-23)

r= X(E)(B P PRp ) b x(e) (8P M)

with
2 w2, 2 -
X(8) g~y K Jeos Praggn i (11-24)
taecmmlc:%n)cosﬁsms

where the unknown constants Bi's have to be determined from boundary

conditions.

Dispersion Relationship and Impact Problems. The dispersion relation for

a composite plate consisting of N layers cen be found immediately by

setting Oy = Tp = Oy = Ty = 0 which leads us to
- -
1 0 1 0
0 x(B) 0 x(e)
A =
cos2BN 1 sin2BN cos2aN 1 sin2aW
+ x(8)sin28N, X(P)coseBN, i X{a)sin2oN, X(a)cosEctN_‘

#

X ()X (B) (L-cos2ol cog2BN)-{X(a)+X-(R))sin2Bn sin2ol (TT-25)
= 0.
28
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where B and o are ovtained by solving (II-21).

This difference equation method can be applied to the impact problem
without any further difficulties by using integral transforms (Fourier
trensform in x, and Laplace transform in time) instead of harmonic
wave analysis. The resulting equations are the same as (II-23) and Bi's
can be determined from O To? % Ty

forms of impact functions. For the present report we have chosen a line

which are now the integral trans-

impact along the x3-aac:‘.s, i.e.,

.2 t th
by = -Po[l-(—a-) }sin -'_’-r‘-(;- ; on + side of N* layer, (IT-26)

for the only nonvanishing impact function. Therefore the resulting
N

boundary conditions are o = 7 = T =0 and oy = 522 which is the

integral transform of t’22' Once the Bi‘s are determined, the dis=-
placement fields and stress fields can be computed by inversion of the
integral transform. For the present problem the inversion cannct be
sccomplished analytically because of the complexity of transformed func-
tion, but since the impact function given by Eq. (II-26) has finite rise

time, durstion and extent both in time and space, inversion can be carried

out numerically by use of Fast Fourier Transform techniques.

Section 5. Numerical Results

Wumericel inversion of the solution for the stresses in a multilayer
plate wag carried out for a two layer model of & composite plate. Each
layer may contain many plys, but foz; the unidirectional fiber layup zase
each layer may represent a single ply. The calculations were carried us-

ing equivalent anisotropic elastic constants for a 55% graphite fiber/epoxy
29



natrix composite plate. A two layer model allows direct caleculation of
midplane interlaminar shear and normal stresses.
The propagation of a wave after impact on & plate consisting of two
steel layers i3z shown in Fig. 16 a ~ £ where we can see two distinct
wave speeds; cl(% 5-33 mm/ysec) for w's and 0y, and ca(% 2,67 mn/usec) for
v's and o while the dilatation wave in steel has a speed of eq = JTK:§;77E_;
5.61 mm/usec and the shear wave e, Ju/o = 3.25 m/usec. This indicates
that the initial signals are propagating via the acoustic branch of the

symmetric mode with an almost constant group veloecity c, = 1.63 e = 5.31

1
mm/usec and the major signals are carried by the bending mode (the acoustic
branch of the antisymmetric mode) whose group velocity is lower than e,
(as shown in Figure 9). Similar phenomena 1s also observed in cese of
an anisotropic composite.

Figure 17a, b shcw the interleminar shear stress versus time for the
45° fibver layup cese (load perpendicular to the fivers) and the change of
interlaminer shear stress along the plate at various times after impact.
Figures 18a, b present similar nmumerical date for the interlaminar normal
stress. In Figure 18b one can see that directly under the load the normel
stress 1s initially compressive but subsequently becomes tensile. This is
due to reflection from the back surface which in the two layer plate model
is en oscillation in the thickness direction. Such tensile stresses may
account for spalling dgmage and ply separation.

Finally in figure 19 deta are presented for the case of the load in

the direction of the fibers. Here for the case of interlaminar shesar tlz

b1
Propagetions of W O3 0 V. and v, are almost exactly same as

1
2
those of Wos Oqq and A\ with different signs in case of u and
o
o949 and they are not shown here.
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. one cen see & distinet wave spreading along the plate in time. From
the figure we find ¢ 1.3 mn/psec which is slightly lower then @p—
as in the lsotropic case mentioned before. Investigation of wave propaga-
tion through the thickness direction reguires an increase in the number of

layers and 1s underway at the writing of this report.
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PART TII
Dynemics of Bird Impact with Aircraft Engines

by
F.C. Moon, S.R. Fang-Landau
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Part TIT - Dynamics of Bird Impact with Aircraft Engines

Section 1. Introduction

It is well known that bird impact on the fan blades of Jet eircraft
poses a sericusthreat to airline safety. This problem has been studieg,
extensively using both dummy birds end actual carcasses, both in Great
Britein (1€] and in this country [7}[IBLIt hes been clearly demonstrated
in these tests that gross damage to composite blades can occur on impact
producing broken parts of blades which themselves can initiate sequential
fracture of the rest of the blade set. Films of single blade en-
counter with bird carcasses or simulated bird materisl suggest that the
olrd may be modelled as a transient fluld mechanics problem. However,
until recently very little analytical or computer modelling of bird
impact was available in the technical literature. A large literature on
computer modelling of transient fluld mechanics pro.lems exlsts with ap-
plication to rain impact and erosion [19-22] but little if any had
been applied to the bird impect problem.

The objective of the Princeton program in this aree was to search
the fluid mechanics literature for solutions and computational techniques
that could be used to predict the forces and pressures on the blade struce~
ture during bird impact. We had also hoped to use such forces to similtane-
ously predict both fluid (bird) and blade motion (and hense stresses) dur-
ing impact. These goals were only partially met as will be discussed be-
low. But the principal problem lies in the reliability of the forces and
Pressures obtained from the computer simulation programs.

Before a proper model can be chosen, one must examine some of the

paysical proverties of common birds. A complete description would include
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the effects ol bones and feathers and noncalcified tissue such as muscle,
tendon, and fat as well as vital organs. A mechanics description of such
an object would include such descriptions as inhomgeneous, viscoelastic
and nonlinear. A complete solution of the impact of such a material is
not possible at this time. Using contempevery techniques, one can hogpe
to obtain a fiuid model which is homogeneous, viscous, and perhaps com-

presginle.
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Section 2. Physicael Properties of Birds
Before examining potential mathematical models for bird impact

studies we review some of the physical properties of common birds. A
sumary of weight and geometric properties of birds was glven by Griffiths
[23]. Elastic and inelastic properties of bones and muscles of many ani-
mals and birds has been campiled by Yamada [24]. WUltrasonic wave pro-
perties of fatty tissue and muscle material are fourd in a review by Fry
and Dunn [25]. For further details the reader is directed to the growing
literature in biomechanies, in particular the collection of reviews
edited by Fung [26].

A summary of the information found in these references is presented
in Table 1. It should be cautioned that the numerical values given are
in general rough values and in some cases may not be representative of a
class of birds becsuse of the small number of specimens sometimes tested.

In summary the weights of birds range from 9 kegm {20 1lb.) for 2 swan
to 1/% kgm (0.55 1b.) for a sparrow hawk. While the density of mammalian
fat and muscle is close to that of water the overall density calculated
by Griffiths [23) was found to be less than that of water. He attributed
this to air sacs which he has estimated range from 10-20% of the volume
of pigeons and ducks. The skeletal structure of flying blrds comprises
less then 10% of the welght [23]. More extensive data for chickens may
be found in [16], since these are readily available in the commer-
cial fcod industry. However, dats baseld on chickens which are ground
birds may be misleading if extrapola*ed to flying birds,which are often
involved in foreign object damage to aircratft.

The ultimate compressive strength of the femur bone of domentlc

fowls and birds is about 6860 N/r.!m2 9,950 psi) in the longitudinal directlon
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and sbout 45% less in the transverse direction (Tables 26, 30 Yamada [24]).
The elastic modulus in compression for an ostrich femur is 0.5 MN/cme(O.'Zﬁ 106psi)
[24], while the value in tension is 136 MN/cna(E.O 106psi) in the wet
condition. Values for other birds were not available.

The strength of bones under impact may be enhanced by the protec-
tion of skir. Currey [27} found that 37% more energy was required to
break rabbit bones protected witk skin under impact than those without
protection.

While bone may be trested as an elastic material, mascle

and tendon are highly nonlinear materiasls. The ultimate tensile strength
of tendon for domestic ducks is around 6370 N/cm2(9200 psi) with 6.7%
elongation (Table 73 Yamada [24]).

The ultrasonic wave speed in memmalien fat and mscle is around
1500 m/s which is near that of water re5). However the decay of ultra-
sonic waves in fat and muscle is much greste.. At 1 Miz the characteristic de-
cay distance 1s 7 and 20 com for muscle and fat respectively compared to

%000 cm for water. Thus the water hammer model, employed in rain impact

problems, which has a shock wave generated in the water on impact, may

not be appropriate for bird impact because the large damping would smooth

out or impede the attempt of the waves to form shocks. Further the pre=
sence of bone would further disperse eny shocks developed by scattering
the waves.

The viscous nature of soft tissue is alsc much greater than water and
is estimated to be as high as 150 poise compared to 10-2 poise for that of
water or 15 poise in the case of glycerine. However a more reglistic model
would certainly include viscoelastic effects which have been measured for

certain biological materials [26] but are not repcr:d here since only fluid

models for birds will be discussed.
35
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Section 3. Bone Irpact Model
Tf the bird is to be treated as a liquid it must be shown that the

impact of skeletal structure of the bird with the fan blade will gener-
ate stresses greater than the strength of the bone material. To model
this we consider the bone as an elastic cylinder of radius R,a under im-
pact with the fan blede material of radius of curvature Rl. Treating
the bone as elastic will obtain an upper bound on the strosses that would
have to be sustained by the bone in order to remain intact.

The solution for the impact of two cylinders, as shown in Figure 20
may b found in the monograph on impact by Goldsmith [28]. The impact
theory presented in [28] is based on that of Hertz which starts with

the contact force between two elastic sollds

/

F = k203’2

where a is the relative approach of the two bodies and k2 is a con-
stant depending on the elastic constants of the composit. £2d bone, and
the geometry Rl’ Rg One of the results of this theory is the time of
contact T

. g_.m{smz]e/ﬁ

v | K,

where V 1is the normel velocity and M is the mass of the bone cylinder.
The results are shown in Figure 2lab.One can see that the contact times
are less than 10 7sec compared with the time of fiight of the bird mass

past the blade of around 10'3 sec.
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The maximum compressive stress cen also be calculated with the Hertz
theory. The details are contained in [28) and are not shown here. The

results are shown in Figure 21b for two cylinders with their axes at 90°

to each other. Here we used R, = 0.64 cm for the radius of the hone, and

20 gm for the mass of impacting cylinder and 0.41 MN/c.m2 (6 x 106psi)

for compressive elastic modull of the bone [24]. The blude material was
assumed to be graphite/epoxy. As one can see, the induced
stress is order of 10° Newton/me, (105 psi) when the impect velocity is
somewhere around 100 m/sec. This stress is muech higher thean the ultimate
strength of the bone in & transverse compressive load (5*103 Newton/cme)
vwhich implies that the failure of the bone is immediate.

This rough calculation supports the idea thet at speeds greater than
50 m/sec the bird may be modelled as a fluid since in any encounter of bome

with the blade the strength of the bone will be greatly exceeded.

Sectim 4. Iiquid Impact Models

The impact of a liquid object with a sclid target has been the sube-
jeet of study in problems of rain erosion [29]-[34] and micrometeorite
impact in the high speed 1limit where the impacting object caun be
treated as a liquid. While water is usually treated as a nonviscous
incomprezsible jiuid at low speeds, during the high speed impact of
rain drops the compressibility of the fluid becomes important and a
shock wave propagates into the fluid upon impact with the solid in a man-
ner similar to waterhammcyr in 2 pipe, Flgure 22. If the impacting
fluid is moving with velocity Vo with respect to e rigid target, a one

dimensional analysis of this problem predicts & pressure p given by

P o= AV

Lo
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where VS is the velocity of propagation of the shock wave in the fluid,
and Po 15 the density in the uncompressed part of the fluid. If the

target is elastic the normal pressure on the solid is (34}

povovﬁ
'
o 8
(2+ 522)
ee

where

Pe is the density of the elastic medivwm and Vé is the
the speed of sound in the elastic solid.

This anelysis neglects motion of the £1uid lateral to the incoming
velocity. In fact if the speed is low enough the fluid will flow tangen-
+ial to the surface rather than compress normal to the surface. In this

hydrodynamic limit the maximm pressure is proportional to

0 V-

00
P = 2

If enough fluid is present and some quasi steady flow is established
near the center of impact a stagnation flow aolution found in many books
{n fluid mechanics cen be used [35], [36]. In this solution the tangential
velocity along the solid increases linearly with distance from the center
of impact.

Peylor [36] has shown that for the steedy flow of a two dimensional
jet of incompressible invisid fluid, impinging on a flat plate, the maxli-
mum pressure is pvi/a and oceurs at the center of impact (Figure 23).
The pressure falls off by about 75% at a distance equal to the width of
the jet. Taylor has also presented data for oblique flow of a jet over
a plate [36].
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A number of computational models have been proposed to solve the
equations of fluid mechanics for transient problems. A review of these
techniques is given by Roache [37]. Amsden, Harlow and coworkers have
developed an extensive computational scheme to solve transient incompress
sible visccus flow problems [19]-[21],[38] as well as for compressible flow
problems. In one published exemple they have treated the transient splash
of a liguid drop into a pool of water as well as the rigid plate impact.
In these examples they have neglected viscosity. Their results show a
radial velocity increasing linearly with radius similar to steady two
and three dimensional stagnation flow.

Recently Hueng, Hammit and Yeng have presented a numericsl scheme for
& nonviscous compressible fluid and have published the results for the
impact of a liguid drop onto a plate [22]. The solution predicts wave
propagation into the liquid but no propagation into the solid target and
no shocks or surfaces of velocity jumps are included. The results are
quite extensive. However in the published discussion following the paper,
Leymann disputes the findings, claiming that shocks should be foimed and
that waterhammer pressures pvovs should be reached. In [22] the cal-

culated pressures in the fluid and on the plate egre far below the

thevretical waterhammer pressure. Also this program does not include the
effects of viscosity which might be important to bird modelling.

Experimental studies of liguid impact pressures have been made including Brunton
[31) and Smith and Kinslow [39]. Experimental bird simulation experi-

ments heve been preformed by Allcock and Collin [16] in Great Britain in

which they measure the force history. they find that the maximm force is

proportional to the idretdecenergy of the bird or squere of the initial

veloeity. Similar results have been reported by Hopkins in the United

States [MO]', ) _ o 39



The depeudance of impact force on the initial kinetic energy of the
bird can be explained using & rough momentum analysis. Thus Lif Fo is
the average impact force, at the time of impact, and all the momentum

uander normal impact is turned 90° to the Initial velocity vector then,

Y,

FoAt = MVO .

If we choose the time of flight D/V_ for the impact time At , where D
is the dismeter of the spherical bird say, then

Mg

o] D

This model can be refined a little by assuming that the momentum is
chenged during impact at a rate proportional to the rate at which the
bird volume crosses an immaginary plane surface. Thus if the bird is re-

presented by a ellipsoid with a surface given by (see Figure 2L)
2 2
-, (e2) _

b2 aE

then if =z is the distance along the symmetry axis of the ellipsoid
from the impacting tip of the moving ligquid the impact force is glven

by
F = Vo ﬂre(z)g-z{; = p:rr"g(z)v2

where r is given by the previocus equation.

For a sphere the maximmmm force is given by
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At V=100 m/sec, D= 8 cm #md p = 103 ltgm/m‘ra (density of water),

3 ~ o b
Fax = 16410° Newtons (= 10

over an aree egual *o ,tna/h would be P = pvi - 107 N/ma(thO psi).

1bf.) The average pressure of such a force

The waterhammer pressure, assuming & shock wave formed in the water
(V, = 1500 m/s), would be p_= eV V_ = 1.5 108 N/u (21,800 psi).

Prom the experiments of Alcoch and Collin [16] and Hopkins [40],
the dependence of impact force on Vi would imply that the average pres=

sures were also so dependent and that the incompressible model would be

appropriate for birds. The compressible nodel with waterhammer pressures

would lead to a linear dependence of force on wvelocity.

However, since the discrepancy between the incompressible and com=
pressible pressures are so great, further study on the effects of com-
pressibility would be worthwhile. If the results of Huang,Harmitt and
Yang [22] are proved right - namely that compressibility does not re=-
quire shocks in the impacting liquid - then the experimental results on

bird impact [16], [40] might be compstible with a compressible model.

Section 5. Results of Hydrodynamic Computer Model

The equations of fluid mechanics were solved using a finite differ-
ence technique for both plane and axisymmetric motions. The differen~

tial equations for incompraossible viscous flow are given below (see e.g.

[35] and Figure 25)

S S d,du v
St a ot -Prg v G-

w1 nZar 3 [aou v
Rt ot -?é*gz"%s;[r(az-s;{]

r
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u and v are velocities in the r, z directions respectively,
g 1is the body force per unit mass end ¢ the pressure/density ratio.
@ =0 in plane coordinates; @ = 1 for axi-symmetric flow or cylindrical
coordinates.

Incompressible flow requires

ar’u . D

= =
D =37 °

b
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The finite difference slgorithm used to simulate bird impact was
Amsden and Herlow's  simplified Marker and Cell program (SMAC) [20] with
modification of the plotting routines, and boundary and initial conditions.
The program was medified to accomodate the IBM360-91 computer and associated
output devieces including printer, plotting and microfilm hardware.

Initially 50 x 50 or 50 x 30 cells were set up. Each cell contalns
nine marker particles. When the number of marker particles per cell is

less than 9 the cell is designeted a surface cell. The fluid "pird"

occupied up to 300 cells.

Both diffusive and convective sources of mumerical instabilitles in
finite difference methods require that the time and distance intervels
At, Az satisfy certain inequalities as necessary conditions for stability

[21], i.e.,

vk 1
(Az)
V. at

o

: <1

L)
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where v 18 the kKinematic viscosity and Vo the initial wvelocity. A

discussion of the stability of the MAC method has been given by Doly and Procht [h1]
In all calculations the sbove inequalities were satisfied. However

8 long time behavior of some of the numerlcal results did not alweys

exhibit continulty in elther position, velocity or pressure from time

cycle to cycle raising questions sbout the reliebility of the melhod.

The SMAC method allows the use of either free slip or no slip boundary

conditions, both of which were tried. While the bird is highly viscous,

the skin and feathers might provide an effective free slip boundary

condition.

Viscosity was kept as a parameter in these étudies which was ignored
in the splashing drop paper of Harlow and Shannon [19] and Huang et al.
[22]. If D represents the diameter of the fluid cylinder or sphere,

Vo the initisl velocity, and v the kinematic viscosity, then the

Reynolds number

used in the computer simulations ranged from .102 <R < 105. Az a

' 2
example we used the datae, V, = 100 m/s, v = 9.5 cm /sec
M
viscosity of glycerine, density of water), D = 26 am, R = 1.7 10

end At = 5 100 s, Az = 1 cm. For this case vAt/Az® = 4.8 10™°

and VoAt/Az = 5 1072 vhich are well below the stebility criteria.
Two geomebric configurations of fluid and target were studied. 1In
the first,normal impact was studied for & fluld cylinder or fluid sphere.
This geometry requires a solution for only half the fluid slug because of
the irherent eymmetry in the problem. Fig. 26 shows the time sequence of fluid
end surface cells of a half sphere under normal impact with a rigld wall. In

the second econfiguration a rigld rectangular terget was set up and an cylindricsal
43



fluid slug could impact the target at elther normal or obligue incidence.
In each case the fluid has &r initisl condition of uniform velozlty with
gravity ignored.

Figures 27, o8 shows a time sequence of marker particles for normal
impact of fluid c¥kinder. The marker particles are shown in Figure 27
and the velocity vectors shown in Figure 28. Filgure 29 shows oblique
impact of & fluld cylinder on the edge of a rectangular object.

A time sequence of masker particles and velocity vectors is shown in Flg-
ures 30,31 for normal impact of & spherical fluid slug with a rigid plate.

For early time after impact the radial velocity at the plate shows

a linear increase with radius which is charactersitic of stagnation point
flow [35]. However as the impact proceeds there appears to develop an

eddy current flow near the plate creating a dead zone of fluid. This

can be seen in the velocity plot in Figure 32 , and the radial velocity
plot verses radius in Figure 33 . Thus if the eddy flow is pnysical and

not due to mmericel instability, the normal impact velocity in the fiuld

actually reverses. A plot of normal velocity flow versus distance along

the ¥ axis for verious times is shown in Figure 34. The velocity

starts out uniform and then the normal velocity of the fluid near the
plate approaches zero for smell times and finally reverses flow for latel
times indiceting an eddy f£iow. This in effect produces & rounded station-
ary fluid obstacle which deflects the remaining fluid away from the cen-
tral plate impact point. This stationary central zone then tends to
create a pressure that is fairly uniform with radius.

The stress in the fluid is given by

an Ju. ; :
tij = "'Paij + 20 B—f‘; + &i' R o h i helt ek e

Ll
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where [Ui] are the cartesian components of the velocity vector, p is
the viscosity coefficient, and p is the hydrostatic pressure. The
pressure p in the SMAC finite difference scheme is found fram an itera-
tive procedure and is a direct output of the program along with the
velocity vectors in each cell. A plot of pressure to density ratio
versus radius is shown in Figure3s for a Reynolds number equvalent
to a 18 cm dismeter fluid sphere moving at 100 m/s with the viscosity of
glycerine at various times during impact up to about 1.0 ms compared to
e time of flight of 1.8 ms. The pressure versus radius exhibits fairly
smooth behavior for & given time, and somewhat constant pressure versus
radius for time between 200 us and 80C ps which was suggested by the
eddy flow phenomena. However the center pressure versus time does not
show a smooth behavior;at first increasing then decreasing and finally
increasing agein implying & high total force at the end of impact than
at the beginning.

Since we had intended to used the total force to calculate the rigid

body motion of the target (fan blade) we attempted to check the computer
calculated pressures and resulting force using a different technique such

as integrating Bernoullis equation for the pressure.

This equation involves calculating accelerations Bx/at which must be
found from two sequentiel time solntions for v. The accelerations
calenlated in this merner however were not reliable and did not lead
to 8 check of the pressure distributions.
Another attempt involved mdding up the totel momentum ZIZv(I,J)
overall the cells (Figure % ). The total normel force is then
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This too produced an erratic force behavior and did not provide a satis=-
factory way to check the calculated pressures.

However if a smooth curve is fitted to the momentum vs. time data,
(Figure 36) and the force calculated from this function,a continuous im-
pact force history is obtained. In addition this force history compares
reasonably well with the integrated pressure profiles found from
the numericel calculation (Figures 37, 38). The force at first pesks
end then attains s constant value for times up to about 20% of the transit
time of the fluid cylinder. Thus while the pressure-time data from the
finite difference code is erratic from cycle to cycle, it appears to be
et least consistent with the velocity or momentwr data when averaged over
& number of cycles.

The effect of slip or no slip boundary conditions on the pressure
distribution on the plete is shown in Figure 39, for a fluid cyclinder under
normal impact. For early times the pressures are about equal but beyond

200 usec the free slip impact results in higher pressures.

Another observation for the full cylinder case is the development
of unsymmetrical radial flow along the plate for normal impact Figure 40.
(Such symmetry is of course guaranteed for the half eylinder or sphere case).
While such instabilities may develop in an actual flow, in the numerical

solution this unsymmetrical flow probably indicates a numerical instability
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in the finite difference code.
In summary velocity plots of viscous incompressible fluid impact with

rigid obstacles using finite difference codes would appear to offer a
way to calculate the forces due to bird impact on fan blades. However
lack of any exact analytical results to check the celculated pressures
and forces raises doubts sbout the efficacy of using this approach to
predict deformation of fan blades. The experience of the rain impact
problem,in which there is great controversy over the actusl pressures
produced during impact, suggests that finite difference codes mey not pro=
ride a definitiwe answer for the bird impact problem either without
further analytical, experimental or other computational check such as

s finite element analysis.
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Conclusions and Recommendations

1. The analytic modelling of constrained layer damping as a mechanism
for decreasing stresses in composite plates due to impact shows promise
of significant reduction of stresses for edge impact forces. Tt is
recommended that constrained layer damping be studied for central impact
of ccmposite plates. To test these results, it is suggested that

g limited experimental program be initiated on the concept of shear

layer damping of impact stresses.

2., The multi-layer peneralization of & Mindlin plate appears to be &
straight forward method of modelling a multiply composite plate Tor the
study of impact response. The combined use of finite difference techniques
in the thickness direction and the fact I'ourier transform in the plane of
the plate results in a fairly efficient method of studying interlaminar
stresses and wave propagation through the plate. This technigue misht

be modified to investigate the effect of interlaminar cracks or flaws on

the impact stresses in the plate.

3. Films and caleulations of stresses in bird bones due to impact seem
to suggest a fluid model for the study of forces duc %Yo bird impact of
aireraft structures. However analytical solutions for trancient impact
of a slug of fluid are neot known. As shown in this report finite Aif-
ference computer codes cur be used to obtain velocity, vprescure and
force histories. These "computer experiments” show the development of
instabilities and eddy flow. in the fluid during impact. Whether such
motions are real or due to computational instability cannot be decided

without comparison with either zxperimental results or other numerical



schemes such as the finite element method.

A search of the computational fluid mechanics literature reveals e nume
ber of potentially useful computer codes for the study of bird impact
forces. These codes, if they proved accurate, could save considersable
sums in experimental testing. However several questions concerning
numerical stability and accuracy of the impact pressures and forces mist
be carefully examined before they are embraced. While a bird is made up
of highly viscous materials, the effect of compressiblity and of shock

propagation into the fluid bird needs to be examlined.
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TABLE T

Physical Properties of Birds

Name Welght (kem)
Coammon Gull 0.45
Wood Plgeon 0.45
Mallard Duck 1.1
Canada Goose 3.8 - 6.4
Whooper Swan 9
percent weight for ¢ icken Body Wings Legs
67.0 6.4 8.6

Specific Properties

Speed of Sound

Rate of Decay

Name Density
en/cn’

Mammalian Tissue 1.07
Human Skull bone 1.7
Chicken Body 1.05
Glycerine (20°C) 1.26
Weter (20°C) 1.0
Alum. 2.7
Lucite 1.18

Neme Density

m/s

1570
3400

1500
6400
2680

0.13(@ 1 MHZ)
1.7(@ 1.2 MHZ)
7.8(@ 3.5 MHZ)
25 10~7

0.2

Strength Properties

Tensite Strength

Chicken Muascle
duck tendon
femur bone
{domestic fowls)
Ostrich femur

(N/en®)

59-98
6370

Compression
(N/cn®)

6860

long direction

Seference

[23]
(23]
[23]
(23]
(23]

Head + Neck

8.0

yiscositx

polse

(10" s /u )
150 p

chicken blood
3-5 10~2p

15p

10“2p

Elastic
ModuTus

1.36 MN/cm2
(tension)

Ref.
[16]

Ref'.

[25]

[16]
[25]

Ref.

(161
[24]
[2k]

[eh ]
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TABLE 11. - STRESS-STRAIN COEFFICIENTS FOR 55 PERCENT GRAPHITE
FIBER-EPOXY MATRIX COMPOSITE

{All coratants to be multiplied by 108 psi, sce Figure 7)

o° Layup ' £15° Layup
27.95 0.3¥57 0.3957 0 0 0 24.56 0.4000 1.986 0 0 0
117 0.4601 0 0 0 1.170 0.4558 0 0 0
1.170 0 0 0 1.574 0 0 0
0.3552 0 0 0.3552 0 0
0.7197 0 2.310 0
0.3552 0.3552
+30° Layup +45° Layup
16.48 0.4118 5.167 0 0 0 8.197 0.4279 6.758 0 0 0
1.170  0.4400 0 0 0 1.170 0.4279 0 0 0
3.093 0 0 0 8.179 0 0 0
0.3552 0 0 0.3552 0 0
5.491 0 7.082 0
0. 3552 0.3552
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