## Cornell University



## Theoretical and Applied Mechanics



Thurston Hall
Ithaca, New York
B. S. Kim, et al

Theoretical and applied Mechanics Cornell University Ithaca, New York

| NASA |  |  |
| :---: | :---: | :---: |
| 4. Title and Subtitle Impact on Multi layered Composite Plates |  | Performing |
| $\begin{array}{ll} \hline \text { 7. Author(s) } & \\ & \text { B.S. KIM and F.C. MOON } \end{array}$ |  | 8. Performing Organi |
| 9. Performing Organization Name and Address <br> Department of Theoretical and Applied Mech. <br> Cornell University <br> Ithaca, N.Y. 14853 |  | 11. Contract or Gr |
| 12. Sponsoring Agency Name and Address <br> National Aeronautics and Space Administration Washington, D.C., 20546 |  | Sponsoring Agency Code |
| 15. Supplementary Notes Project Manager: C.C. ChamisMaterials and Structures DivisionNASA Lewis Research CenterCleveland, Ohio, 44135 |  |  |
| 16. Abstract <br> Stress wave propagation in a multilayer composite plate due to impact has been examined by means of the anisotropic elasticity theory. The plate is modelled as a number of identical anisotropic layers and the approximate plate theory of Mindin is then applied each layer to obtain a set of difference-differential equations of motion. Dispersion relations for harmonic waves and correction factors are found. The governing equations are reduced to difference equations via integral transforms. With given impact boundary conditions these equations are solved for an arbitrary number of layers in the plate and the transient propagation of waves is calculated by means of a Fast Fourier Transform algorithm. <br> The multilayered plate problem is extended to examine the effect of damping layers present between two elastic layers. A reduction of the interlarminar normal stress is significant when the thickness of the damping layer is increased but it seems that the effect is mostiy due to the softness of the damping layer. Finally the problem of a composite plate with a crack on the interlarminar boundary has been formulated. <br> reproouced by <br> NATIONAL TECHNICAL INFORMATION SERVICE U. S. DEPARTMENT OF COMMERCE SPRINGFIELD, VA. 22161 |  |  |
| 17. Key Words (Suggested by Author(s)) Multilayered Composite Plate, Approximate Plate Theory of Mindlin, Impact, Stress Wave, Dispersion Relation, Wave surface, Damping Layer, Crack, Fast Fourier Transform. |  |  |
| 19. Security Classif. (of this report) Unclassified |  | 21. No. of Pages |

* For sale by the National Technical Information Service, Springfield, Virginia 22151


## NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

## IMPACT ON MULTILAYERED COMPOSITE PLATES



## Contents

Page
Preface and Summary ..... ii
Symbols Used ..... iv
I Introduction ..... 1
II Impact on Multilayer Elastic Plate ..... 5
III Impact of a Composite Plate with an
Interlaminar Damping Layer ..... 30
IV Impact on a Plate with a Crack ..... 37
V Conclusion and Recommneded Research ..... 43
Reference ..... 44
Figures ..... 47
Appendix A - Flow Chart ..... 72
Appendix B - Sample Computer Deck ..... 76
Appendix C - Program and Sample Output ..... 77
$\Delta$ : Plate thickness (Nondimensional length unit)
b: A half of the layer thickness
N: Layer number in the plate
$\rho: \quad$ Density
$t_{0}$ : Impact time
$P_{0}\left(x_{1}, t\right)$ : Impact stress
$*_{x_{1}}(\eta), x_{2}(\xi):$ Coordinate variables

* $t(\tau)$ : Time variable
$T_{0}$ : Nondimensional time unit $=a / \sqrt{c_{66} / \rho}$
* $\sigma_{i j}, \sigma(\Sigma), \tau(T), \sigma_{11}:$ Stress tensor and its components
* $u_{i}, u(U), v(V):$ Displacement vector and its components
$* c_{i j k \ell}, c_{i j}\left(c_{i j}\right):$ Elastic Moduli $\left(\hat{c}_{11}=\dot{c}_{11}-\frac{c_{12}^{2}}{c_{22}}\right)$
$\lambda, \mu:$ Lame's constants
$\varepsilon_{i j}, \varepsilon_{i}$ : Infinitesimal strain tensor
$\hat{\bar{A}}$ : Laplace transform (in $\tau$ ) and Fourier transform (in $\eta$ ) of $A$
$P_{n}(\xi)$ : Legendre polynomial of $\xi$
* $k(k)$ : Wave number
* $\omega(\bar{\omega})$ : Frequency
$\theta, \alpha, \beta:$ Phase shifts (wave number through the thickness)
$C_{D}, C_{S}$ : Dilatational and shear wave speed
$G^{*}(\omega)=G^{\prime}(\omega)+i G^{\prime \prime}(\omega):$ Complex modulus of elastomer
D: Thickness of viscoelastic layer
h: A half of the crack length
* 

Quantities in ( ) are nondimensional quantities.

## Preface and Summary

This report is the last of a series on the response of composite plates to impact forces. The motivation for these studies has been an attempt to understand the damage to aircraft jet engine fan blades by foreign object impact such as ice balls, stones, and birds. In addition, the National Aeronautics and Space Administration, sponsors of this research, have sought to develop computer codes from these analyses which will aid the fan blade designer in locating potential failure modes and positions and thus assist in optimizing fan blade fabrication to create greater impact tolerance.

The basic approach of the principal investigator in these studies has been to use wave propagation techniques to model the early response of composite plates to impact tyfe for:es. In using the wave method, the plate can be simplified in the analyscis by neglecting reflections from edge boundaries far from the impact point. Thes;whlle the overall geometiy. of the pilate 1s no langer ineludedunthe mansis, monesophisticated mathematical modelunear the point of impact have been used.

The basic model for the composite plate studies has been the anisotropic plate theory as extended by Mindin [I] to account for wave phenomena. The plate equations were used as an approximation of the exact theory of elasticity because they lead to simpler computational schemes for evaluatingaverage stresses and displacements in the plate.

Fourier and Laplace transform techniques have been used throughout these studies and inversion of the transforms has been accomplished with a fast Fourier transform algorithm. This algorithm is an effective complitational tool but requires careful scaling of the impact problem in both space and time
variabies. When it is properly used it can lead to calculations of thousands of stress values in a fraction of the time of conventional finite element schemes.

In summary, the use of plate models for the fan blade impact has avoided the analytical complexities of the exact theory of elasticity as well as the computational difficulties of finite element methods.

In earlier reports both central and edge impact of an anisotropic plate were studied, [2-4]. In those reports only wave propagation in the plane of the plate was investigated. In another report [5] a multilayer plate model was developed in order to study impact induced wave propagation in both the thickness and in plane directions. In this final report further results are presented from the multilayer model. The composite plate has been modeled with as many as eight separate layers. Each layer may itself have several plys, so that effective anisotropic constants must be used for each layer in the analysis. The mathematical model exhibits wave propagation in both the thickness and inplane directions. Impact generated waves are shown to lead to interlaminar shear stresses and interlaminar tensile stresses during and after impact.

This report also presents an analysis of an impact damping mechanism. This consists of thin damping layer introduced between composite layers in the mathematical model. The resulting response due to impact shows that considerable reduction of stress can be achieved. However it appears that this stress reduction is linked to the lower elastic moduli of the damping sublayers and not the viscous nature of the sublayer.

Fianlly an attempt was made to analyze the impact of a plate with a crack. While the problem has been formulated, no progress was made on obtaining numerical answers to the crack problem.

## I. INTRODUCTION

The present research is a continuation of our previous work on the stress wave propagation in a laminated composite [2-5]. It has been motivated by the problem of the impact on jet engine fan blades caused by ingestions of foreign materials, such as birds and hallstones. The successful application of fiber-reinforced composite materials depends on the ability of these materials to withstand forces due to such impact.

The simplest approach to examine the dynamic behavior of a composite plate is based upon the work of White and Angona [6]. In their work, referred to as the effective modulus theory, the response of the composite plate to waves propagating normal to the laminate is predicted by a single constant wave speed, regardless of the internal structure of composites. Even though this theory is satisfactory for many problems, it fails in the case of some problems when the wave lengths become short. To overcome this limitation, Sun and et al. proposed a model which includes the effects of internal structure, such as the layer thickness [7]. In their work, referred to so the effective stiffness theory, displacements of both the reinfore ing layer and the matrix layer are expressed as linear expansions about the midplanes of the layers and approximate equations of motion are derived for both layers. Then these approximate equations are required to satisfy the continuity conditions of displacement and stress components on every interface. Using this model the propagation of harmonic waves has been examined.

More recently a number of researchers have presented models for multilayer plates either by the discrete-continuum theory or the continuum mixture theory [8-14]. Many, however examined only the frequencywave number dispersion relationship and stopped short of the transient

# ORIGNAL PAGQ OF POOR QUALITY 

impact problem except for a fev experimental or numerical works using the finite element method which sometimes show a considerable äscrepancy from the experimental results.

In this report we present a new attempt to mathematically model the multilayer plate and develop a method by which we can examine the transient propagation of an impact wave in the plate, not only along the longitudinal direction but also through the thickness direction of the plate as well, using an inexpensive Fast Fourier Transform algorithm $[3,15]$.

The composite plate under consideration for the first part of the present report is imagined to comprise $N$ identical elastic layers. And each layer is made of a number of unidirectional plys lying alternately at a layup angle $\pm \phi$ from the symmetry axis, as shown in Fig. 1. Then the elastic properties of the plate depend on the layup angle $\phi$. A key assumption for the first step of the work is that all the layers are identical. While restricting the application, this assumption allows us to formulate the problem using difference-differential equations due to a rather simple periodic structure of the plate. This technique for periodic structures has been widely used in the study of electrical transmission lines [16] and in the vibration of multistory buildings [17]. By means of an approximate plate theory of Mindin [18], a set of approximate equations of motion is developed for a typical layer using the interlaminar stresses as explicit variables. The relative motion of a layer to the adjacent layers is related by phase shifts which represent the solution of the difference parts of equations. In this way the number of the layers can be increased without increasing the size of matrix in the numerical process of invert to satisfy the boundary conditions.

It is also well understood that a thin viscoelastic layer present between elastic layers can reduce the elastic impact energy significantly by dissipating the strain energy into heat $[19,20]$. In our previous work [5] an elastomer layer is presented between a composite half space and a protection strip on the edge on which the impact is applied. Numerical results of the work showed an appreciable reduction in the normal stress. As an extension of this research and the first part of this report we now examine the wave propagation in a composite plate made of two elastic layers and an elastomer layer. Generalization of this problem is straightforward by assuming that our new periodic composite layer is now made of an elastic sublayer and a viscoelastic sublayer lying alternately. We can now develop the approximate theory which includes both sublayers. For the second part of the present research we will examine the simplest case of this kind, i.e., an impact on a composite plate consisting of two elastic layers and an elastomer layer between them.

Another possible extension of the multilayer composite plate which can be found in frequent practice is discussed in the last part of this report. In this chapter a crack is introaiuced on the interface between two elastic layers which represent the final step before a failure occurs in the composite either by spalling or by excessive shear stress. Such crack problems constitute the main part of the study of fracture mechanics. A serious mathematical difficulty arises even in the static problems because of the mixed boundary conditions along the crack direction. The difficulty becomes more serious in the case of dynamic problems due to the diffraction of waves at the crack tip [21-24]. By employing the approximate equations of motion developed in the first part, the transient wave problem has been formulated and dual integral
equations are obtained after application of the mixed boundary conditions. But the resulting dual integral equations are not easy to solve and are under investigation at this time.

In the results presented in this report only a line impact has been examined. This has simplified the calculations and saved computer time in testing the model. The technique, however, can be extended to the twodimensional or central impact problem. Since the impact speed is very high ( $\sim 450 \mathrm{~m} / \mathrm{sec}$ ) and the impact time is short ( $<100 \mu \mathrm{sec}$ ), the impact can be in the range of the elastic-plastic impact or even in the range of the hydraulic impact. But the initial transmission of impact energy is propagated by elastic waves, as if in an unbounded plate, and it is useful to investigate the problem by means of the linear theory of anisotropic elasticity in an infinite composite plate.

## II. IMPACT ON MULTILAYER ELASTIC PLATE

## 1. Formulation

Basic Theory of Linear Anisotropic Elasticity
Cauchy's equations of motion in cartesian tensor form without body forces are given by

$$
\begin{align*}
& \sigma_{i j, i}=\rho \ddot{u}_{j} \\
& \sigma_{i j}=\sigma_{j i} \tag{II-1}
\end{align*}
$$

where the repeated index implies summation on that index. A comma represents a partial differentiation with respect to the index following the comma and a superposed dot denotes a time derivative.
tensor is related to the infinitesimal strain tensor $\varepsilon_{i j}$ by

$$
\begin{equation*}
\sigma_{i j}=c_{i j k \ell} \varepsilon_{k \ell} \text { or } \sigma_{i}=c_{i j} \varepsilon_{j} \tag{II-2}
\end{equation*}
$$

The condensed elastic moduli $c_{i j}$ has the following form for orthotropic materials

$$
c_{i j}=\left[\begin{array}{ccccc}
c_{11}, c_{12}, c_{13}, 0,0 \\
c_{12}, & c_{22}, c_{23}, & 0,0,0 \\
c_{13}, c_{23}, c_{33}, & 0,0,0 \\
0, & 0,0, c_{44}, 0, & 0 \\
0, & 0,0,0, & c_{55}, & 0 \\
0, & 0,0,0,0, & c_{66}
\end{array}\right]
$$

## Analysis of a Layer

For a layer shown in Fig. 1 we employ the approximate plate theory of Mindlin [18] and the displacement field $\underset{\sim}{u}$ is expanded in terms of the Legendre polynomials as

$$
\begin{equation*}
\underset{\sim}{u}\left(x_{1}, x_{2}, x_{3}, t\right)=\sum_{n=0}^{\infty}{\underset{\sim}{u}}^{(n)}\left(x_{1}, x_{3}, t\right) \cdot{\underset{n}{n}}(\xi) \tag{II-3}
\end{equation*}
$$

where $\xi$ is the local coordinate along the thickness direction, normalized by b, a half layer thick.

Instead of solving Eq. (II-1) directly we solve a new approximate equation of motion which is obtained through a variational process by integration of Eq. (II-1) over the thickness $\xi$ (see [1]; [23]). The result is

$$
\mathrm{b} \cdot \sigma_{\alpha j \alpha}^{(n)}+\left[P_{n}(\xi) \cdot \sigma_{2 j}\right]_{\xi=-1}^{1}-\stackrel{*}{\sigma_{2 j}(n)}=\frac{2 \rho b}{2 n+1} \ddot{u}_{j}^{(n)}: \begin{align*}
& j=1,2,3  \tag{II-4}\\
& \alpha=1,3
\end{align*}
$$

where

$$
\begin{aligned}
& \sigma_{\alpha j}^{(n)}=\int_{-1}^{1} P_{n}(\xi) \cdot \sigma_{\alpha j} d \xi \\
& \sigma_{2 j}^{*(n)}=\int_{-1}^{1} \frac{d P(\xi)}{d \xi} \sigma_{2 j} d \xi
\end{aligned}
$$

By substituting the constitutive relation (II-2) for the displacement expansion (II-3) into the above approximate equations of motion, we can find governing equations of motion in terms of $u_{1}^{(0)}, u_{2}^{(0)}, u_{3}^{(0)}, u_{1}^{(1)} \ldots$. The accuracy of this approximate theory depends on how many terms of the
displacement field we retain. Since the complexity in formulation increases rapidly with the number of terms included we keep terms only up to second order. Furthermore, we will examine harmonic waves propagating along the $x_{1}$ and $x_{2}$ directions so that we drop $u_{3}^{(n)}$ terms and set $\frac{\partial}{\partial x_{3}}\}=0$. Next to get rid of the undesired coupling with higher modes we set $\ddot{u}_{1}^{(2)}=\ddot{u}_{2}^{(2)}=0$. Then the resulting equations are

$$
\begin{equation*}
\left(\sigma_{21}^{+}-\sigma_{21}^{-}\right)-2\left(c_{66} u_{2,1}^{(1)}+\frac{3}{b} c_{66} u_{1}^{(2)}\right)=0 \tag{II-5}
\end{equation*}
$$

where the sign + and - represent the stress components on the top and bottom surfaces of the layer under examination, i.e., at $\boldsymbol{\xi}= \pm 1$. Here we notice that the first, fourth, and last equations are written in terms of $u_{i}^{(n)}$, where ( $n+i$ ) is an odd integer and represents the thickness stretching motion (or symmetric motion). In the rest of the equations in which ( $n+i$ ) is an even integer the displacements represent the flexual motion (or antisymmetric motion). Hence, this process has decoupled the

$$
\begin{aligned}
& 2 b\left(c_{11}{ }_{1,11}^{(0)}+\frac{1}{b} c_{12} u_{2,1}^{(1)}\right)+\left(\sigma_{21}^{+}-\sigma_{21}^{-}\right)=2 b \rho \ddot{u}_{1}^{(0)} \\
& 2 b c_{66}\left(\frac{1}{b} u_{1,1}^{(1)}+u_{2,11}^{(0)}\right)+\left(\sigma_{22}^{+}-\sigma_{22}^{-}\right)=2 b \rho \ddot{u}_{2}^{(0)} \\
& \frac{2 b}{3}\left(c_{11} u_{1,11}^{(1)}+\frac{3}{b} c_{12} u_{2,1}^{(2)}\right)-2 c_{66}\left(\frac{u_{1}^{(1)}}{b}+u_{2,1}^{(0)}\right)+\left(\sigma_{21}^{+}+\sigma_{21}^{-}\right)=\frac{2}{3} b \rho \ddot{u}_{1}^{(1)} \\
& \frac{2 b}{3}\left(c_{66}{ }_{2,11}^{(1)}+\frac{3}{b} c_{66} u_{1,1}^{(2)}\right)-2\left(c_{12} u_{1,1}^{(0)}+\frac{1}{b} c_{22} u_{2}^{(1)}\right)+\left(\sigma_{22}^{+}+\sigma_{22}^{-}\right)=\frac{2}{3} b \rho \ddot{u}_{2}^{(1)} \\
& \left(\sigma_{22}^{+}-\sigma_{22}^{-}\right)-2\left(c_{12} u_{1,1}^{(1)}+\frac{3}{b} c_{22} u_{2}^{(2)}\right)=0
\end{aligned}
$$

stretching motion from bending motion. To get rid of the 2 nd order modes from Eq. (II-5) we solve the last two equations for $u_{2}^{(2)}$ and $\mathrm{u}_{1}^{(2)}$, and insert them into the remaining equations. Then Eq. (II-5) can be reduced as follows:

$$
\begin{aligned}
& 2 b\left(c_{11} u_{1,11}^{(0)}+\frac{1}{b} c_{12} u_{2,1}^{(1)}\right)+\left(\sigma_{21}^{+}-\sigma_{21}^{-}\right)=2 b \rho \ddot{u}_{1}^{(0)} \\
& 2 b c_{66}\left(\frac{1}{b} u_{1,1}^{(1)}+u_{2,11}^{(0)}\right)+\left(\sigma_{22}^{+}-\sigma_{22}^{-}\right)=2 b \rho \ddot{u}_{2}^{(0)} \\
& \left.\frac{2 b_{\hat{c}}}{3}{ }_{11} u_{1,1}^{(1)}-2 c_{66} u_{1}^{u_{1}^{(1)}}+u_{2,1}^{(0)}\right)+\frac{c_{12}^{b}}{3 c_{22}}\left(\sigma_{22}^{+}-\sigma_{22}^{-}\right),_{1}+\left(\sigma_{21}^{+}+\sigma_{21}^{-}\right)=\frac{2}{3 b \rho u_{1}^{(1)}} \\
& -2\left(c_{12} u_{1,1}^{(0)}+\frac{1}{b} c_{22} u_{2}^{(1)}\right)+\left(\sigma_{22}^{+}+\sigma_{22}^{-}\right)=\frac{2}{3} b \rho \ddot{u}_{2}^{(1)}
\end{aligned}
$$

where $\hat{c}_{11}=c_{11}-c_{12}^{2} / c_{22}$.

## Plate Analysis

In view of the Legendre polynomial expansion, the displacements on the both sides of a layer can be written as $u_{i}^{ \pm}=u_{i}^{(0)} \pm u_{i}^{(1)}$ since the governing equations for a layer, Eq. (II-6), only include terms up to the first order of expansion, i.e., a linear expansion. Remembering that this analysis is valid for any arbitrary layer in a plate, say the nth layer, equation (II-6) can be immediately written as

[^0]\[

$$
\begin{align*}
\rho\left(\ddot{u}_{n}+\ddot{u}_{n-1}\right)= & c_{11}\left(u_{n}+u_{n-1}\right)_{, 11}+\frac{c_{12}}{b}\left(v_{n}-\ddot{v}_{n-1}\right)_{, 1}+\frac{1}{b}\left(\tau_{n}-\tau_{n-1}\right) \\
\rho\left(\ddot{v}_{n}-\ddot{v}_{n-1}\right)= & -\frac{3}{b} c_{12}\left(u_{n}+u_{n-1}\right)_{, 1}-\frac{3}{b^{2}} c_{22}\left(v_{n}-v_{n-1}\right)+\frac{3}{b}\left(\sigma_{n}+\sigma_{n-1}\right)+\left(\tau_{n}-\tau_{n-1}\right)_{, 1} \\
\rho\left(\ddot{u}_{n}-\ddot{u}_{n-1}\right)= & \hat{c}_{11}\left(u_{n}-u_{n-1}\right)_{, 11}-\frac{3 c_{66}}{b^{2}}\left(u_{n}-u_{n-1}\right)-\frac{3}{b} c_{66}\left(v_{n}+v_{n-1}\right)_{, 1} \\
& +\frac{c_{12}}{c_{22}}\left(\sigma_{n}-\sigma_{n-1}\right)_{11}+\frac{3}{b}\left(\tau_{n}+\tau_{n-1}\right)  \tag{II-7}\\
\rho\left(\ddot{v}_{n}+\ddot{v}_{n-1}\right)= & c_{66}\left\{\frac{1}{b}\left(u_{n}-u_{n-1}\right)+\left(v_{n}+v_{n-1}\right)_{, 11}\right\}+\frac{1}{b}\left(\sigma_{n}-\sigma_{n-1}\right)
\end{align*}
$$
\]

where $\sigma$ and $\tau$ are used to represent $\sigma_{22}$ and $\sigma_{12}$ and $u$ and $v$ denote $u_{1}$ and $u_{2}$, respectively. These equations are the approximate equations of motion of a layer written in the form of a difference-differential
equation. For a plate made of $N$ layer, the above equations contain $4(N+1)$ unknowns $\left(u_{0}, v_{0}, \tau_{0}, \sigma_{0}, \ldots u_{N}, v_{N}, \tau_{N}, \sigma_{N}\right)$ and offer $4 N$ equations. Since the adātional four conditions are supplied by boundary conditions on the top and bottom surfaces, solutions of these equations can be found.

In Eq. (II-7) we notice some. important points. The first point is that the logitudinal coordinate $x_{1}$ and the time variable are continuous variables while the thickness coordinate $\mathrm{x}_{2}$ is now discrete. This enables us to use integral transforms in $x_{1}$ and time variables so that we can arrive at pure difference equations after integral transforms.

The second point concerns the continuity conditions of stress and displacement. We note that $u, v,-\sigma_{22}$, and $\sigma_{12}$ have to be continuous across the layer boundary and these conditions are identically satisfied by

Eq. (II-7). But the normal stress tangential to the layer boundary is not necessarily continuous and Eq. (II-7) allows such a possibility. One can retain higher order terms in the displacement expansion given by Eq. (II-3) to give more accurate results. This can be achieved more easily by using Eq. (II-7) and increasing the number of layers in a plate under consideration. This process does not give any additional difficulties except a little more computer time.

## 2. Dispersion Relationships of Harmonic Waves

## Harmonic Waves

Before we examine the transient propagation of stress wave due to an impact we first investigate dispersion relations of harmonic waves in a composite plate governed by approximate equations of motion (II-7). For harmonic waves propagating along the $x_{1}$ axis we assume

$$
\begin{equation*}
\left\{u_{n}, v_{n}, \sigma_{n}, \tau_{n}\right\}=\left\{U_{n}, v_{n}, \Sigma_{n}, T_{n}\right\} e^{i\left(k x_{1}-\omega t\right)} \tag{II-8}
\end{equation*}
$$

Substituting this into the approximate equations of motion (II-7) we obtain

$$
\begin{align*}
& \left(\bar{\omega}^{2}-c_{11} \kappa^{2}\right)\left(U_{n}+U_{n-1}\right)+c_{12} i k\left(V_{n}-V_{n-1}\right)+b\left(T_{n}-T_{n-1}\right)=0 \\
& -3 c_{12} i k\left(U_{n}+U_{n-1}\right)+\left(\bar{\omega}^{2}-3 c_{22}\right)\left(V_{n}-V_{n-1}\right)+i k b\left(T_{n}-T_{n-1}\right)+3 b\left(\Sigma_{n}+\Sigma_{n-1}\right)=0 \\
& 3 c_{66^{i k}\left(U_{n}-U_{n-1}\right)+\left(\bar{\omega}^{2}-c_{66} k^{2}\right)\left(V_{n}+V_{n-1}\right)+b\left(\Sigma_{n}-\Sigma_{n-1}\right)=0}^{\left(\bar{\omega}^{2}-\hat{c}_{11} k^{2}-3 c_{66}\right)\left(U_{n}-U_{n-1}\right)-3 c_{66} i k\left(V_{n}+V_{n-1}\right)+3 b\left(T_{n}+T_{n-1}\right)}  \tag{II-9}\\
& \\
& +\frac{c_{12}}{c_{12}} i k b\left(\Sigma_{n}-\Sigma_{n-1}\right)=0
\end{align*}
$$

for $n=1,2 \ldots N$. Here we set

$$
\begin{aligned}
k & =b k=k\left(\frac{\Delta}{2 N}\right), \quad \Delta=2 b N \\
\bar{\omega}^{2} & =\rho b^{2} \omega^{2}=\rho \omega^{2}\left(\frac{\Delta}{2 N}\right)^{2}
\end{aligned}
$$

and $\Delta$ is the total thickness of the plate. For a plate consisting of N layers, the boundary conditions require traction free surfaces, namely, $T_{0}=\Sigma_{0}=T_{N}=\Sigma_{N}=0$. When these conditions are applied to equation (II-9) we obtain 4 N equations in terms of 4 N unknowns $\left(\mathrm{U}_{0}, \mathrm{~V}_{0}\right.$; $U_{n}, V_{n}, T_{n}, \Sigma_{n}$ with $\left.n=1, \ldots N-1 ; U_{N}, V_{N}\right)$. By setting the coefficient matrix to be singular, required dispersion relationships can be obtained.

## One-1ayer Plate

The dispersion relationship for a plate made of a single layer can be found by setting $N=1$ in equation (II-9) with $\Sigma_{0}=T_{0}=\Sigma_{1}=T_{1}=0$. The resulting equations are now written in matrix form as follows:
(II-10)

Then by setting the determinant of the coefficient matrix to zero we obtain

$$
\begin{align*}
& c_{11} \kappa^{2}-\frac{1}{3}\left(\bar{\omega}^{2}-3 c_{22}\right)\left(\bar{\omega}^{2}-c_{11} \kappa^{2}\right)=0 \\
& c_{66} \kappa^{2}-\frac{1}{3}\left(\bar{\omega}^{2}-\hat{c}_{11} \kappa^{2}-3 c_{66}\right)\left(\bar{\omega}^{2}-c_{66} \kappa^{2}\right)=0 . \tag{II-11}
\end{align*}
$$

Here we notice that the first relationship corresponds to the state of deformation of $U_{1}=U_{0}$ and $V_{1}=-V_{0}$, which represents the thickness extension of the plate (or the symmetric mode), and the second describes the flexual deformation (or antisymmetric mode). The exact theory of plates gives an infinite number of dispersion relationships, but because this model only has two inertia points (namely $n=0,1$ ), each of them having two components of displacement, we only have the first four relationships.

Dispersion relationships and corresponding phase velocities for an isotropic plate with Poisson's ratio $1 / 4$ (namely $\lambda=\mu$ ) are given in Fig. 2 a and 2 b up to the range where the wave length becomes equal to the plate thickness. Solid lines represent the symmetric modes and dotted lines the antisymmetric modes. As predicted by Mindlin and Medick the optical branch of the symmetric mode approaches the dilatation wave [18]. The acoustic branch of the antisymmetric mode starts from the bending motion and approaches the shear wave when the wave number $k$ becomes larger and larger*. Similar relationships for an anisotropic plate made of $55 \%$ graphite fiber-epoxy matrix with a layup angle of $45^{\circ}$ are shown in Fig. 3a and 3b.

[^1]
## Two-1ayer Piate

In this case we obtain eight equations by putting $n=1$ and 2 in equation (II-9). Boundary conditions require $T_{0}=\Sigma_{0}=T_{2}=\Sigma_{2}=0$. By following the same procedure we find the dispersion relations as

$$
\begin{align*}
& \left\{\left(\bar{\omega}^{2}-c_{11} \kappa^{2}\right)\left(\bar{\omega}^{2}-3 c_{22}\right)-3 c_{12}^{2} \kappa^{2}\right\}\left(\bar{\omega}^{2}-\hat{c}_{11} \kappa^{2}-3 c_{66}+\frac{c_{66} c_{12}}{c_{22}} \kappa^{2}\right) \\
&  \tag{II-12}\\
& +3\left(\bar{\omega}^{2}-c_{11} \kappa^{2}\right)\left\{\left(\bar{\omega}^{2}-c_{66} \kappa^{2}\right)\left(\bar{\omega}^{-2}-\hat{c}_{11} \kappa^{2}-3 c_{66}\right)-3 c_{66}^{2} \kappa^{2}\right\}=0 \\
& \left\{\left(\bar{\omega}^{2}-c_{66} \kappa^{2}\right)\left(\bar{\omega}^{2}-\hat{c}_{11} \kappa^{2}-3 c_{66}\right)-3 c_{66}^{2} \kappa^{2}\right\} \\
& \\
& +3\left(\bar{\omega}^{2}-c_{66} \kappa^{2}\right)\left\{\left(\bar{\omega}^{2}-c_{11} k^{2}\right)\left(\bar{\omega}^{-2}-3 c_{22}\right)-3 c_{12}^{2} \kappa^{2}\right\}=0
\end{align*}
$$

Again the first equation represents the symmetric mode and is shown as solid lines in Fig. 4 and 5. The second equation is plotted with dotted lines representing the antisymmetric mode.

As expected we have six relationships since the this two-layer model is equivalent to a three-mass system with two degrees of freedom for each mass. When the wave number $k \Delta$ increases the following are observed: for the symmetric mode the upper optical branch approaches the dilatation wave, whereas for the antisymmetric mode the lower optical branch approaches the shear wave*.

[^2]In general, we can obtain a $2(N+1)$ order polynomial of $\bar{\omega}^{-2}$ by expanding a $(4 \mathbb{N}) \times(4 N)$ determinant and finding $2(N+1)$ dispersion relationships. But, unfortunately, this process involves considerably complicated algebra and it may be necessary to develop a computer technique to find roots of an equation in determinant form (not in polynomial form).

A difference equation approach can be used to solve the $N$ set of four simultaneous first order difference equatiors given by Eq. (II-9). This proceedure is neat and can be generalized for any number of layers as discussed in the next section; but the last step of this approach, where a long polynomial is to be solved again, is not any simpler than the previous direct method.

## 3. Impact on an Elastic Composite Plate

Normalization and Integral Transforms of Governing Equations
The governing equations given by (II-7) are first nondimensionalized as follows:

$$
\begin{aligned}
& \left\{U_{n}, V_{n}, n\right\}=\left\{u_{n} / \Delta, U_{n} / \Delta, x_{1} / \Delta\right\} \\
& \left\{c_{i j}, T_{n}, \Sigma_{n}\right\}=\left\{c_{i j} / c_{66}, \tau_{n} / c_{66}, \sigma_{n} / c_{66}\right\} \\
& \tau=t / T_{0}
\end{aligned}
$$

where $\Delta$ is the total thickness of the plate and $T_{o}$ is the time required for the quasi-shear wave to travel the impact radius. Next we apply a Laplace transform in $\tau$ and a Fourier transform in $\eta$, i.e.,

$$
\begin{aligned}
& \hat{g}(s)=\int_{0}^{\infty} g(t) e^{-s \tau} d \tau \\
& \bar{g}(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} g(\eta) e^{i k n} d \eta
\end{aligned}
$$

Then the resulting equations are

$$
\begin{align*}
& -\left(f_{s}^{2}+\frac{C_{11}}{2 N} k^{2}\right)\left(\hat{\bar{U}}_{n}+\hat{\bar{U}}_{n-1}\right)-C_{12} i k\left(\hat{\bar{V}}_{n}-\hat{\bar{V}}_{n-1}\right)+\left(\hat{\bar{T}}_{n}-\hat{\bar{T}}_{n-1}\right)=0 \\
& C_{12} i k\left(\hat{\bar{U}}_{n}+\hat{\bar{U}}_{n-1}\right)-\left(\frac{f s^{2}}{3}+2 N C_{22}\right)\left(\hat{\bar{V}}_{n-1}-\hat{\bar{V}}_{n-1}\right)+\left(\hat{\bar{\Sigma}}_{n}+\hat{\bar{\Sigma}}_{n-1}\right)-\frac{i k}{6 N}\left(\hat{\bar{T}}_{n}-\hat{\bar{T}}_{n-1}\right)=0 \\
& -C_{66} i k\left(\hat{\bar{U}}_{n} \hat{\bar{U}}_{n-1}\right)-\left(f s^{2}+\frac{C_{66}}{2 N} k^{2}\right)\left(\hat{\bar{V}}_{n}+\hat{\bar{V}}_{n-1}\right)+\left(\hat{\bar{\Sigma}}_{n}-\hat{\bar{E}}_{n-1}\right)=0  \tag{II-13}\\
& -\left(\frac{f s^{2}}{3}+\frac{\hat{C}_{11} k^{2}}{6 N}+2 N C_{66}\right)\left(\hat{\bar{U}}_{n}-\hat{\bar{U}}_{n-1}\right)+C_{66} i k\left(\hat{\bar{V}}_{n}+\hat{\bar{V}}_{n-1}\right)-\frac{C_{12}}{6 N C_{22}}\left(\hat{\bar{\Sigma}}_{n}-\hat{\bar{E}}_{n-1}\right)+\left(\hat{\bar{T}}_{n} \hat{\bar{T}}_{n-1}\right)=0
\end{align*}
$$

where the normalization factor $f$ is given as

$$
\mathrm{f}=\frac{1}{2 \mathrm{~N}} \frac{\Delta^{2} \rho}{c_{66} \mathrm{~T}_{0}^{2}}=\frac{\mathrm{b} \Delta \rho}{\mathrm{c}_{66} \mathrm{~T}_{0}^{2}}
$$

## Solution of Difference Equations

Since the simultaneous difference equations given are linear and all the coefficients are constants the solution [26] has to be

$$
\begin{equation*}
\left\{\hat{\bar{U}}_{n}, \hat{\overline{\mathrm{~V}}}_{n}, \hat{\bar{T}}_{n}, \hat{\bar{\Sigma}}_{n}\right\}=\{A, B, C, D\} e^{2 i \theta n} \tag{II-14}
\end{equation*}
$$

where the phase shift $\theta$ is complex, in general, and propagation through the thickness direction in the plate is characterized by $\theta$. Namely, $\theta$ is the wave number in the thickness direction. By substituting solution (II-14) into the difference equation (II-13) we obtain a set of four simultaneous homogeneous equations through which the relationships among the constants $A, B, C$, and $D$ have to be determined. If we set the resulting coefficient matrix of $A, B, C$, and $D$ to be singular we obtain the following equation for phase shift $\theta$ :

$$
\begin{align*}
& \cos ^{4} \theta\left(f s^{2}+\frac{C_{11} k^{2}}{2 N}\right)\left(f s^{2}+\frac{C_{66}}{2 N} k^{2}\right) \\
& +\sin ^{4} \theta\left(\frac{f s^{2}}{3}+2 N C_{22}-\frac{C_{12} k^{2}}{6 N}\right) \cdot\left(\frac{f s^{2}}{3}+\frac{\hat{C}_{11}}{6 N} k^{2}+2 N C_{66}-\frac{C_{66} C_{12}}{6 N C_{22}} k^{2}\right) \\
& +\cos ^{2} \theta \sin ^{2} \theta\left[\left(f s^{2}+\frac{C_{11}}{2 N} k^{2}\right)\left\{\frac{k^{2}}{6 N} C_{66}+\frac{f s^{2}}{3}+2 N C_{22}-\left(\frac{k}{6 N}\right)^{2} \frac{C_{66}}{C_{22}}\left(f s^{2}+\frac{C_{66}}{2 N} k^{2}\right)\right\}\right. \\
& \left.-\left(C_{12}+C_{66}\right)^{2} k^{2}+\left(f s^{2}+\frac{C_{66}}{2 N} k^{2}\right)\left(\frac{f s^{2}}{3}+\frac{C_{11}}{6 N} k^{2}+2 N C_{66}+\frac{C_{12}^{2} k^{2}}{6 N C_{22}}\right)\right] \tag{II-15}
\end{align*}
$$

$$
=a_{1} \cos ^{4} \theta+a_{2} \cos ^{2} \theta+a_{3}=0 .
$$

This equation implies that for a given wave number $k$ along $x_{1}$ and a frequency $s$ ('s represents the frequency for the case of harmonic waves), an infinite value of wave numbers exists for propagation through the thickness direction, but only four of them are sufficient to give all linearly independent solutions of the form of Eq . (II-14). If we denote the solution of the phase shift equation as

$$
\begin{align*}
& \cos ^{2} \beta=\frac{-a_{2}+\sqrt{a_{2}-4 a_{1} a_{3}}}{2 a_{1}} \\
& \cos ^{2} \alpha=\frac{-a_{2}-\sqrt{a_{2}-4 a_{1} a_{3}}}{2 a_{1}} \tag{II-16}
\end{align*}
$$

the complete general solutions of difference equation (II-13) are

(II-17)

Next, by substituting the above solutions into the original difference equations (II-13) we find the relationships among $A_{i}, B_{i}, C_{i}$, and $D_{i}$. The results are
where $E_{1}=D_{1}+D_{2}, E_{2}=D_{1}-D_{2}, E_{3}=C_{3}+C_{4}, E_{4}=C_{3}-C_{4}$ and

$$
X_{i}(\beta)=-\frac{\Delta_{i}(\beta)}{\Delta(\beta)}
$$

$$
\Delta(\beta)=\left(f s^{2}+\frac{C_{11}}{2 n} k^{2}\right)\left(f s^{2}+\frac{C_{66}}{2 n} k^{2}\right) \cos ^{3} \beta
$$

$$
+\left\{\left(\mathrm{fs}^{2}+\frac{\mathrm{C}_{66}}{2 \mathrm{n}} \mathrm{k}^{2}\right)\left(\frac{\mathrm{fs}^{2}}{3}+\frac{\hat{\mathrm{c}}_{11}}{6 \mathrm{n}} \mathrm{k}^{2}+2 \mathrm{nC} 66\right)-\mathrm{C}_{66} \mathrm{C}_{12} \mathrm{k}^{2}-\mathrm{C}_{66}^{2} \mathrm{k}^{2}\right\} \sin ^{2} \beta \cdot \cos \beta
$$

$$
\Delta_{1}(\beta)=i k \sin ^{2} \beta \cos \beta\left\{\frac{C_{12}}{6 n c_{22}}\left(f^{2}+\frac{C_{66}}{2 n}{ }^{2}\right)-\left(C_{12}+C_{66}\right)\right\}
$$

$$
\Delta_{2}(\beta)=i \sin ^{3} \beta\left\{\frac{C_{66} C_{12}}{6 n c_{22}} k^{2}-\left(\frac{f^{2}}{3}+\frac{\hat{c}_{11}}{6 n}{ }^{2}+2 n C_{66}\right)\right\}-\cos ^{2} \beta \sin \beta\left(\mathrm{fs}^{2}+\frac{C_{11}}{2 n} k^{2}\right)
$$

$$
\Delta_{3}(\beta)=k \sin ^{3} \beta\left(\left(\frac{f s^{2}}{3}+\frac{\hat{c}}{6 n}-k^{2}+2 n C_{66}\right) C_{12}-\frac{c_{12}^{2} k^{2}}{6 n C_{22}} C_{66}\right\}
$$

$$
+k \sin B \cos ^{2} B\left\{\frac{C_{12}}{6 n^{C_{22}}}\left(f s^{2}+\frac{C_{11} k^{2}}{2 n}\right) \cdot\left(f s^{2}+\frac{c_{06}}{2 n} k^{2}\right)-\left(f s^{2}+\frac{C_{11}}{2 n} k^{2}\right) C_{66}\right\}
$$

and

$$
\begin{aligned}
& Y_{i}(\alpha)=-\frac{\bar{\Delta}_{i}(\alpha)}{\bar{\Delta}(\alpha)} \\
& \bar{\Delta}(\alpha)=i \cos ^{2} \alpha \cdot \sin \alpha\left\{C_{66} k^{2}\left(C_{12}+C_{66}\right)-\left(f s^{2}+\frac{C_{66}}{2 n} k^{2}\right) \cdot\left(\frac{f s^{2}}{3}+\frac{\hat{c}_{11} k^{2}}{6 n}\right.\right. \\
& \left.\left.+2 n C_{66}+\frac{2}{6 n^{2} \mathrm{k}_{22}}\right)\right\}+i \sin ^{3} \alpha\left(\frac{\mathrm{fs}^{2}}{3}+2 n \mathrm{C}_{22}\right) \\
& x\left(\frac{C_{66}{ }^{C_{12}}{ }^{k^{2}}}{6 n C_{22}}-\frac{f s^{2}}{3}-\frac{C_{11} k^{2}}{6 n}-2 n C_{66}\right) \\
& \bar{\Delta}_{1}(\alpha)=\cos ^{3} \alpha\left(f s^{2}+\frac{C_{66}}{2 n} k^{2}\right) \\
& \left.+\sin ^{2} \alpha \cdot \cos \alpha\left\{-\left(\frac{\mathrm{k}}{6 \mathrm{n}}\right)^{2^{\mathrm{C}} \frac{12}{\mathrm{C}_{22}}\left(\mathrm{fs}^{2}+\frac{\mathrm{C}_{66}}{2 \mathrm{n}} \mathrm{k}^{2}\right)+\frac{\mathrm{k}^{2}}{6 \mathrm{n}} \mathrm{C}_{66}+\left(\frac{\mathrm{fs}}{}{ }^{2}\right.}+2 \mathrm{n} \mathrm{C}_{22}\right)\right\} \\
& \bar{\Delta}_{2}(\alpha)=k \cdot \cos ^{2} \alpha \sin \alpha\left(C_{12}+C_{66}\right) \\
& +k \sin ^{3} \alpha\left\{\frac{1}{6 n}\left(\frac{f s^{2}}{3}+\frac{\hat{C}_{11} k^{2}}{6 n}+2 n C_{66}\right)-\left(\frac{k}{6 n}\right)^{2} \frac{C_{12} C_{66}}{C_{22}}\right\} \\
& \bar{\Delta}_{3}(\alpha)=i k \sin ^{2} \alpha \cos \alpha\left\{\frac{c_{66}^{2}}{6 n} k^{2}-\frac{1}{6 n}\left(\frac{f s^{2}}{3}+\frac{\hat{C}_{11^{\prime}}{ }^{2}}{6 n}+2 n C_{66}\right)\left(f s^{2}+\frac{c_{66}}{2 n} k^{2}\right)\right. \\
& \left.+C_{66} k\left(\frac{f s^{2}}{3}+2 n C_{22}\right)\right\}+i k \cos ^{3} \alpha\left\{-C_{12}\left(f s^{2}+\frac{C_{66}}{2 n} k^{2}\right)\right\} .
\end{aligned}
$$

Equations (II-18) with (II-19,20) and the phase shifts $\alpha$ and $\beta$ given by (II-16) constitute the final form of the general solutions of the difference equations (II-13).

In Eqs. (II-19,20) we notice that when $k \rightarrow 0$ we have $X_{1}(\beta)=X_{3}(\beta)=$ $Y_{2}(\alpha)=Y_{3}(\alpha)=0$. Namely the propagation of the normal stress (with phase shift $\beta$ ) and the propagation of the shear stress (with phase shift $\alpha$ ) are completely decoupled. This occurs when the waves are propagating only through the thickness direction [27].

## Impact Boundary Condition

Boundary conditions for an impact can be described by any two conditions among $u_{0}, v_{0}, \sigma_{0}$, and $\tau_{0}$ and another two conditions from $u_{N}, v_{N}, \sigma_{N}$ and ${ }^{\tau} \mathrm{N}^{\text {. }}$ For our present problem we have chosen a line impact by a normal stress along the $x_{3}$ axis (Figure 1), i. e.,

$$
\begin{align*}
\sigma_{0} & =-\frac{P_{0}}{4}\left(1-\cos \frac{2 \pi t}{t_{0}}\right)\left(1+\cos \frac{\pi x}{a}\right):|x| \leq a \text { and } 0 \leq t \leq t_{0} \\
& =0:|x|>a \text { or } t>0 \text { or } t>t_{0} \\
\tau_{0} & =\sigma_{N}=\tau_{N}=0 . \tag{II-21}
\end{align*}
$$

Hence, the boundary conditions for the present impact problem lead to the following equation

where $q$ is the integral transform of the impact function (II-21)*. Solving the above equations for $E_{i}^{\prime} s$ we can have

$$
\begin{align*}
& E_{i}=\frac{D_{i}}{D} q \\
& D=\left\{1+X_{3}^{2}(\beta) Y_{3}^{2}(\alpha)\right\} \sin 2 \alpha N \cdot \sin 2 \beta N+2 X_{3}(\beta) Y_{3}(\alpha)(\cos 2 \alpha N \cdot \cos 2 \beta N-1) \\
& D_{1}=X_{3}(\beta) Y_{3}(\alpha)(\cos 2 \alpha N \cdot \cos 2 \beta N-1)+\sin 2 \alpha N \cdot \sin 2 \beta N \\
& D_{2}=i\left\{\cos 2 \beta N \cdot \sin 2 \alpha N-X_{3}(\beta) Y_{3}(\alpha) \cos 2 \alpha N \cdot \sin 2 \alpha N\right\}  \tag{II-23}\\
& D_{3}=i X_{3}(\beta)\left\{X_{3}(\beta) Y_{3}(\alpha) \sin 2 \beta N \cdot \cos 2 \alpha N-\cos 2 \beta N \cdot \sin 2 \alpha N\right\} \\
& D_{4}=X_{3}(\beta)\left\{X_{3}(\beta) Y_{3}(\alpha) \sin 2 \alpha N \cdot \sin 2 \beta N+\cos 2 \beta N \cdot \cos 2 \alpha N-1\right\}
\end{align*}
$$

Substituting the $E_{i}^{\prime} s$ into the general solution (II-18) we can find the complete solutions which satisfy the impact boundary conditions given by (II-21). In other words, for given values of $k$ and $s$ we first find the phase shift $\alpha$ and $B$ from (II-15,16) and with these we can find solutions in integral transform from equations (II-18,23) which are the final solutions under impact. After $\hat{\overline{\mathrm{U}}}_{\mathrm{n}}, \hat{\overline{\mathrm{V}}}_{\mathrm{n}}, \hat{\overline{\mathrm{T}}}_{\mathrm{n}}$ and $\hat{\bar{\Sigma}}_{\mathrm{n}}$ are calculated

* Allowing the determinant of the coefficient matrix to vanish leads to aispersion relations of an $N$-layer plate, namely $D(\alpha, \beta)=0$. Then, $\alpha$ and $\beta$ are obtained from (II-15,l6) which gives the complete dispersion relationships.
with a given impact function $q$, they can be inverted easily by means of the fast Fourier transform routine $[3,20]$ to give the complete displacement and the stress fields after impact.


## Tangential Normal Stress

As discussed following Eq. (II-7), the tangential normal stress does not appear explicitly in the approximate equations of motion. Therefore, this component of the stress has to be calculated from the constitutive equation. Namely,

$$
\begin{aligned}
& \sigma_{11}=c_{11} u_{0,1}+\frac{c_{12}}{2 b}\left(v_{1}-v_{0}\right) \\
& \sigma_{11}=c_{11} u_{n, 1}+\frac{c_{12}}{2 b}\left(v_{n}-v_{n-1}\right) \quad 1 \leq n \leq N
\end{aligned}
$$

or after normalization and integral transform they are

$$
\begin{align*}
& \hat{\bar{\sigma}}_{11}=-i k C_{11} \dot{\hat{U}}_{0}+N \cdot C_{12}\left(\hat{\bar{V}}_{1}-\hat{\bar{V}}_{0}\right)  \tag{II-24}\\
& \hat{\bar{\sigma}}_{11}=-i k C_{11} \hat{\bar{U}}_{n}+N \cdot C_{12}\left(\hat{\bar{V}}_{n}-\hat{\bar{V}}_{n-1}\right) \quad 1 \leq n \leq N \quad .
\end{align*}
$$

Then once the displacement field is computed the tangential normal stress can be obtained from the above equation and inverted.

The analysis discussed in the previous section includes the tronsient propagation in all directions but suitable choices of impact time, impact radius, sizes of time and distance steps are essential to make good use of the fast Fourier transform. For example, if we take a large time increment with a relatively thin plate propagation through the thickness will not be seen. For this matter we have examined several different cases.

## Case 1: Longitudinal propagation

Propagation of impact generated waves along the longitudinal direction is examined for an isotropic plate (steel plate: $\lambda=\mu=1.2 \times 10^{7}$ psi) employing a two-layer model. For these calculations we used an impact time $t_{0}=10 \mu \mathrm{sec}, \mathrm{plate}$ thickness $\Delta=1 \mathrm{~cm}$, and impact radius $a=4 \mathrm{~cm}$. Some of the results at a few different time sequences are shown in Fig. 6 a-f.

In these figures we can see two distinct states of propagation and corresponding wave fronts: one for horizontal displacements (u) and longitudinal normal stresses $\left(\sigma_{11}\right)$, and another for vertical displacements (v) and shear stresses ( $\tau$ ). In other words, the initial signals of the horizontal displacements and longitudinal normal stresses propagate through the plate with longitudinal wave speed at amplitudes that are relatively small: But the major parts of their signals are due to a bending wave propagating with shear stresses and vertical displacements with a lower velocity. When the group velocities of these waves are calculated from the numerical results, they are about $5 \mathrm{~mm} / \mu \mathrm{sec}$ and $3 \mathrm{~mm} / \mu \mathrm{sec}$, respectively, while the phase velocities of the unbounded
medium of this material are $C_{d}=\sqrt{(\lambda+2 \mu) / \rho}=5.61 \mathrm{~mm} / \mu \mathrm{sec}$ and $C_{S}=\sqrt{\mu / \rho}=3.25 \mathrm{~mm} / \mu \mathrm{sec}$.

## Case 2: Propagation Through Thickness

To examine the propagation through the thickness it is necessary to have
a sufficient number of layers in a plate. It is also essential to make the time step relatively small compared to the layer thickness. To do this we increase the thickness of the plate and the number of layers and reduce the impact time.

In Figs. 7 and 8 propagation of the transverse normal stress in the same plate $\left(\Delta=4 \mathrm{~cm}, t_{0}=2 \mu \mathrm{sec}, a=40 \mathrm{~cm} ; 4\right.$-layer model) is shown at different time sequences. As seen in Fig. 7, the transverse normal stress is initially compressive due to the impact and a compression wave propagates through the thickness. But later it becomes a tension wave after reflection from the free surface and the tension wave propagates back to the impact surface. In Fig. 8 we see the change of the transverse normal stress and the interlaminar shear stress with time for the same impact conditions as in Fig. 7.

Similar results are also shown for the case of an anisotropic plate in Fig. 9 (55\% graphite fibers-epoxy matrix, layup angle $=15^{\circ} ; \Delta=1 \mathrm{~cm}$, $t_{0}=2 \mu \mathrm{sec}, a=2 \mathrm{~cm} ; 8$-layer model). Here we again notice a clear delay in time for waves to travel from one layer to the next one. Another important point is that the shape of the impact stress is relatively well preserved during the initial stage of propagation but changes immediately afterwards. The distortion of the shape becomes more serious with further propagation due to reflection, thus, showing the highly aispersive nature of the harmonic waves in the approximate plate theory.

When the group velocities are calculated from these results, we find 6.32 $\mathrm{mm} / \mu \mathrm{sec}$ for the dilatation wave and $3.33 \mathrm{~mm} / \mu \mathrm{sec}$ for the shear wave in the case of the isotropic plate and $2.5 \mathrm{~mm} / \mu \mathrm{sec}$ for the quasi-dilatation wave of the anisotropic plate. Their expected values are, respectively,5.61, 3.25 , and $2.36 \mathrm{~mm} / \mu \mathrm{sec}$. In other words, waves going through the thickness are traveling faster than expected.

Case 3. Wave Surfaces
In the previous two cases we examined the transient waves propagating dominantly along either the $x_{1}$ axis or through the thickness direction by. suitable choices of the plate geometry and impact condition. now examine the combined effect, simultaneous propagation in both directions. This effect is shown in Fig. 10 (isotropic plate; $\Delta=4 \mathrm{~cm}$, $t_{0}=4 \mu \mathrm{sec}, a=4 \mathrm{~cm} ; 4$-layer model) where the transverse normal stress generated from the line source due to impact not only spreads out in all directions but also reflects from the free surface.

When the plate is anisotropic, the situation is more complex in the sense that waves are neither dilatation nor shear but they are coupled together (now called quasi-dilational or quasi-shear waves). Due to the coupling, phase velocities of the anisotropic wave vary from one direction to another, resulting in complicated shapes for the velocity surfaces and wave fronts [2]. For an ansiotropic plate (made of $55 \%$ graphite fiberepoxy matrix with layup angle $45^{\circ}$ ) the velocity surfaces and the wave surfaces are shown in Fig. 11. The stress state at 10 usec after the impact on the same plate $\left(\Delta=4 \mathrm{~cm}, t_{0}=4 \mu \mathrm{sec}, a=2 \mathrm{~cm} ; 8\right.$-layer model $)$ with the corresponding wave fronts are shown in Fig. 12a. In the
propagation of the quasi-longitudinal wave we notice that the longitudinal propagation is well bounded by the quasi-dilatational wave surface but the transverse propagation is not. The shear wave is not bounded by the quasi-shear wave front in either direction.

This interesting phenomenon of higher propagation speeds through the thickness is related to the dispersion relationship at short wave length limits; it is discussed in the next section.

## Correction Factor

According to the present model of a multilayer plate, one of the antisymmetric modes of the dispersion relationships approaches the shear speed when the wave length becomes shorter and shorter, as mentioned in Section 2. It is well understood that such a limit is incorrect, i.e., in the limit of short wave length there should be a Rayleigh wave instead of a shear wave. Such a discrepancy can be eliminated by introduction of proper correction factors, as shown by Mindlin and Medick [18]. Correction factors can be found by examining either the large wave number limit or the cut-off frequencies of both the exact theory and the present approximate theory. Since these two ways lead us to the same results we will find the factors by matching the cut-off frequencies of the two theories.

The cut-off frequencies of the exact theory for an isotropic plate can be obtained from the well-known Rayleigh-Lam's equation. The lowest cut-off frequencies are $\frac{\pi}{\Delta} \sqrt{(\lambda+2 \mu) / \rho}$ for the symmetric mode and $\frac{\pi}{\Delta} \sqrt{\mu / \rho}$ for the antisymmetric mode. The corresponding cut-off frequencies of our approximate theory are $\frac{2}{\Delta} \sqrt{3 c_{22} / \rho}$ and $\frac{2}{\Delta} \sqrt{3 c_{66} / \rho}$. Hence, we notice that replacing $c_{22}$ by $c_{22} \pi^{2} / 12$ and $c_{66}$ by $c_{66} \pi^{2} / 12$ makes the two theories have the same two lowest cut-off frequencies. Furthermore the shear wave observed in the short wave length limit of the present approximation becomes a wave with a speed of $\frac{\pi}{\sqrt{12}} \sqrt{\mu / \rho}$, i.e., the Rayleigh wave.

Another important consequence of the correction factor is to reduce propagation speeds through the thickness, which are related to $\sqrt{c_{22} / \rho}$

[^3]and $\sqrt{\mathrm{C}_{66} / \rho}$, with a factor of $\pi / \sqrt{12}$. Propagation of the maximum value of the interlaminar normal stress through the thickness is examined with and without correction factors and the results are shown in Fig. 13. Without the correction factor the propagation speed in a composite plate is roughly about $2.60 \mathrm{~mm} / \mathrm{usec}$ obtained from the numerical results used in Fig. 12 . When the same plate is subjected to identical impact conditions this reduces to about $2.41 \mathrm{~mm} / \mu \mathrm{sec}$ with the correction factor. Comparing this with the group velocity in an unbounded composite space ( $=2.36 \mathrm{~mm} / \mu \mathrm{sec}$ ) the agreement of the present approximate theory is remarkable. Similar results are also observed in the case of shear and quasi-shear waves. When these correction factors are introduced in the previous cases, shown in Figs. 8, 9, and 12, all the signals propagating through the thickness are now well bounded within the corresponding wave fronts, as shown in Fig. 12b and from this we can notice the importance of the correction factors. Discussion and Computation Time

It is interesting to compare the computation time of this model with some other methods, such as the finite element method or the finite difference method. In the case of an 8-layer anisotropic plate model, from which Figs. 9 and 12 are produced, we have

9 steps along the thickness: 8-layer model;

32 step along the $x_{1}$ direction: 64 points are used in pratice but only half of them are useful because of the symmetry of the problem,

32 steps in time;
2 displacement components at each point.
Therefore the total number of the unknowns, which are the basic unknowns either in case of the finite difference or finite element methods, is

18,432. After these primary variables are calculated, 27,648 secondary variables (three stress components at each points) have to be calculated again. According to our present model all these processes require only 200 K of computer space without using magnetic tapes or any kind of additional storage space and only 1 minute 6 seconds for CPU time in the IBM 370-168 model including compiling, linkage editing, I/O and execution.

## Conclusion

The present theory is a generalization of Mindlin's approximate plate theory applied to a multilayer plate under an impact. By combined use of the finite difference technique in the thickness direction and the fast Fourier transform in the plane of plate and time, this model can be very useful for the study of wave propagation in a composite plate under impact forces. However, reasonable attention in usage of the fast Fourier transform is required to avoid spurious data. From the limited numerical data obtained from this model it appears that the anisotropy in the plate will lead to a considerable interlaminar shear which might lead to ply bonding failures. The model also shows that for short enough impact times, an interlaminar tension can develop as one would expect, which might also account for interlaminar ply failure.
III. IMPACT OF A COMPOSITE PLATE WITH AN INTERLAMINAR DAMPING LAYER

## 1. Description of Problem

Geometry of Plate
As an extension of the multilayer plate discussed in Chapter II we now examine the impact and the consequent stress wave propagation in a composite plate with viscoelastic damping layers. Possible models for damping mechanisms in plates are shown in Fig. 14. We will formulate a model made of an alternating number of elastic and viscoelastic layers, as shown in Fig. 14-c. As long as the layer structure of the plate is periodic, the main part of the analysis in Chapter II for an elastic plate is valid with additional equations for viscoelastic layers.

## Viscoelastic Property of Elastomer

The mechanical properties of an elastomer are usually expressed in terms of a complex modulus depending on the frequency, i.e.,

$$
G^{*}(\omega)=G^{\prime}(\omega)+i G^{\prime \prime}(\omega)
$$

With this the constitutive equation is written as

$$
\begin{equation*}
\bar{\sigma}_{i j}(\omega)=G^{*}(\omega) \bar{\varepsilon}_{i j}(\omega) \tag{III-2}
\end{equation*}
$$

in the frequency space where $\bar{\sigma}_{i j}(\omega)$ and $\varepsilon_{i j}(\omega)$ are respectively the Fourier transforms of $\sigma_{i j}$ and $\varepsilon_{i j}$ in time [29].

[^4]$$
\bar{f}(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) e^{-i \omega t} d t .
$$

The constitutive relation (III-2) with the complex modulus (III-1) implies the following constitutive equation in a time space:

$$
\begin{equation*}
\underset{\sim}{\sigma}(x, t)=\int_{-\infty}^{t} G(t-\tau) \underset{\sim}{\dot{\varepsilon}}(x, \tau) d \tau \tag{III-3}
\end{equation*}
$$

where the relaxation function $G(t)$ is related with the complex modulus $G^{*}(\omega)$ as

$$
\begin{equation*}
G^{*}(\omega)=\frac{1}{i \omega} \int_{0}^{\infty} G(t) e^{-i \omega t} d t . \tag{III-4}
\end{equation*}
$$

Therefore, when the complex modulus $G^{*}(\omega)$ is obtained by experiments, usually by means of harmonic excitation of strain, the relaxation function $G(t)$ can be found by inversion of equation (III-4).

The viscoelastic property of the elastomer under consideration has been extensively investigated (e.g. [19]) and its complex modulus is given in Fig. 15. This complex modulus can be reasonably well described by a three parameter equation as

$$
\begin{equation*}
G^{\prime}(\omega)=a-\frac{6}{\omega^{2}+c} . \tag{III-5}
\end{equation*}
$$

These three parameters are obtained from another set of parameters: the maximum values of $G^{\prime}(\omega)$ when $\omega \rightarrow \infty$, the maximum value of $G^{\prime \prime}(\omega) / G^{\prime}(\omega)$ and the $\omega_{0}$ at which $G^{\prime \prime}(\omega) / G^{\prime}(\omega)$ becomes the maximum. Therefore if we characterize the complex modulus by proper choice of $G^{\prime}(\omega), \omega_{0}$ and the maximum of $G^{\prime \prime}\left(\omega_{0}\right) / G^{\prime}\left(\omega_{0}\right)$, the relaxation functions are completely described.

## 2. Formulation

## Elastic Layer

In Fig. 16 a typical viscoelastic layer (nth) is shown between two adjacent elastic layers (nth and ( $n+1$ )th) with appropriate discretization. The approximate equations of motion for the nth elastic layer given by Eq. (II-7) are still valid. But remembering the new discretizing notation in Fig. 16 we now have to replace ()$_{n}$ and ()$_{n-1}$ by ( $)_{n}^{-}$ and ()$_{n-1}^{+}$, respectively. The results are

$$
\begin{aligned}
& \rho\left(\ddot{u}_{n}^{-}+u_{n-1}^{+}\right)=c_{11}\left(u_{n}^{-}+u_{u-1}^{+}\right), 11+\frac{c_{12}}{b}\left(v_{n}^{-}-v_{n-1}^{+}\right), 1+\frac{1}{b}\left(\tau_{n}^{-}-\tau_{n-1}^{+}\right) \\
& \rho\left(\ddot{v}_{n}^{-}-\ddot{v}_{n}^{+}\right)=-\frac{3 c_{12}}{b}\left(u_{n}^{-}+u_{n-1}^{+}\right), 1-\frac{3 c_{22}}{b^{2}}\left(v_{n}-v_{n-1}^{+}\right)+\frac{3}{b}\left(\sigma_{n}^{-}+\sigma_{n-1}^{+}\right)+\left(\tau_{n}^{-}-\tau_{n-1}^{+}\right), 1 \\
& \rho\left(\ddot{u}_{n}^{-}-u_{n-1}^{+}\right)=\hat{c}_{11}\left(u_{n}^{-}-u_{n-1}^{+}\right), 11-\frac{3 c_{66}}{b^{2}}\left(u_{n}^{-}-u_{n-1}^{+}\right)-\frac{3 c_{66}}{b}\left(v_{n}^{-}+v_{n-1}^{+}\right), 1 \\
& +\frac{c_{12}}{c^{22}}\left(\sigma_{n}^{-}-\sigma_{n-1}^{+}\right), 1+\frac{3}{b}\left(\tau_{n}^{-}+\tau_{n-1}^{+}\right) \\
& \rho\left(\ddot{v}_{n}^{-}+\ddot{v}_{n-1}^{+}\right)=c_{66}\left\{\frac{1}{b}\left(u_{n}^{-}-u_{n-1}^{+}\right), 1+\left(v_{n}^{-}+v_{n-1}^{+}\right), 11\right\}+\frac{1}{b}\left(\sigma_{n}^{-}-\sigma_{n-1}^{+}\right)
\end{aligned}
$$

## Viscoelastic Layer

Since the thickness of the elastomer is thin compared with the elastic layer, we can assume that the stress field is uniform through the thickness of the elastomer. In other words, we have $\sigma_{n}^{-}=\sigma_{n}^{+}=\sigma_{n}$ and $\tau_{n}^{-}=\tau_{n}^{+}=\tau_{n}$ for (III-6). Therefore, the following compatibility conditions for the
elastomer can be obtained immediately:

$$
\begin{align*}
& \varepsilon_{12(n)}=\frac{1}{4} \frac{\partial}{\partial x_{1}}\left(v_{n}^{+}+v_{n}^{-}\right)+\frac{1}{2 D}\left(u_{n}^{+}-u_{n}^{-}\right) \\
& \varepsilon_{22(n)}=\frac{1}{D}\left(v_{n}^{+}-v_{n}^{-}\right) \tag{III-7}
\end{align*}
$$

where $D$ is the thickness of the elastomer.
We further assume that the dissipation is mostly due to shear motion,
( i.e., that the normal component of the continuous traction vector is transmitted through the viscoelastic layer purely elastically. Therefore, by combining (III-7) with (III-3) we find

$$
\begin{aligned}
\sigma_{n} & =\frac{E}{D}\left(v_{n}^{+}-v_{n}^{-}\right) \\
\tau_{n} & =\int_{-\infty}^{t} G(t-\tau)\left\{\frac{1}{2} \frac{\partial}{\partial x_{1}}\left(\dot{v}_{n}^{+}+\dot{v}_{n}^{-}\right)+\frac{1}{D}\left(\dot{u}_{n}^{+}-\dot{u}_{n}^{-}\right)\right\} d \tau
\end{aligned}
$$

(III-8)

These two equations and four more from Eq. (III-6) are the complete equations needed to solve the impact on a composite plate with elastomer. For a plate made of $N$ elastic layers and ( $\mathrm{N}-1$ ) viscoelastic layers Eq. (III-6) provides 4 N equations and (III-8) gives $2(\mathrm{~N}-1)$ equations. Since the total number of the unknown are now $6 \mathrm{~N}+2\left(u_{0}, v_{0}, \sigma_{0}, \tau_{0}\right.$; $u_{1}^{-}, v_{1}^{-}, u_{1}^{+}, v_{1}^{+}, \sigma_{1}, \tau_{1} ; \ldots \ldots ; u_{N-1}^{-}, v_{N-1}^{-}, u_{N-1}^{+}, v_{N-1}^{+}, \sigma_{N-1},{ }_{N-1}$; $u_{N}, v_{N}, \sigma_{N}, \tau_{N}$ ) we can solve this system of equations with four additional conditions supplied by the suitable boundary conditions.

Here we notice that the governing equations are now a set of six difference-integro-partial differential equations. These equations can be
reduced to difference equationsafter appropriate integral transforms and the resulting difference equations can be handled rather simply, as in the previous chapter.

## 3. Numerical Results and Discussion

## Impact on Plate

For the report we examine the impact on a plate consisting of two elastic layers and a viscoelastic layer,as shown in Fig. 17,with an impact function

$$
\begin{aligned}
\sigma_{0} & =P_{0}\left\{1-\left(\frac{x_{1}}{a}\right)^{2}\right\} \sin \frac{\pi t}{t_{0}} ; \quad\left|x_{1}\right|<a \text { and } 0<t<t_{0} \\
& =0
\end{aligned} \quad ; \quad\left|x_{1}\right|>a \text { or } t>t_{0}, \text { or } t<0, ~ l \text { III-9 }
$$

with all other stress components vanishing on both surfaces of the plate. Now by putting $n=1$ and 2 into Eq. (III-6) we have eight equations and two more equations are obtained from Eq. (III-8). We again normalize these equations and take the integral transform, as in Chapter II. The resulting equations are:

$$
\begin{aligned}
& -\left(f s^{2}+\frac{C_{11}}{\Delta} b k^{2}\right)\left(\hat{\bar{U}}_{1}^{-}+\hat{\bar{U}}_{0}\right)-C_{12} i k\left(\hat{\bar{V}}_{1}^{-}-\hat{\bar{V}}_{0}\right)+\hat{\bar{T}}_{1}=0 \\
& 3 C_{12} i k\left(\hat{\bar{U}}_{1}^{-}+\hat{\bar{U}}_{0}\right)-\left(f s^{2}+\frac{3 C_{22}^{\Delta}}{b}\right)\left(\hat{\overline{\mathrm{V}}}_{1}^{-}-\hat{\bar{V}}_{0}\right)+3 \hat{\bar{\Sigma}}_{1}-i k \frac{\mathrm{~b}}{\Delta} \hat{\bar{T}}_{1}=-3 \hat{\bar{\Sigma}}_{0} \\
& -\left(f s^{2}+\frac{b}{\Delta} C_{6} k^{2}\right)\left(\hat{\bar{V}}_{1}^{-}+\hat{\bar{V}}_{0}\right)-C_{66}{ }^{i k}\left(\hat{\bar{U}}_{1}^{-}-\hat{\bar{U}}_{0}\right)+\hat{\bar{\Sigma}}_{1}=\hat{\bar{\Sigma}}_{0} \\
& -\left(f s^{2}+\frac{b}{\Delta} \hat{C}_{11} k^{2}+\frac{\Delta}{b} 3 C_{66}\right)\left(\hat{\bar{U}}_{1}^{-}-\hat{\bar{U}}_{0}\right)+3 C_{66} i k\left(\hat{\bar{v}}_{1}^{-}+\hat{\bar{V}}_{0}\right)-\frac{C_{12}}{C_{22}} \frac{b}{\Delta} i k \hat{\bar{\Sigma}}_{1}+3 \hat{\bar{T}}_{1}=-\frac{C_{12}}{C_{22}} \frac{b}{\Delta} i k \hat{\bar{\Sigma}}_{0} \\
& -\left(f s^{2}+\frac{\mathrm{C}_{11}}{\Delta} \mathrm{bk}^{2}\right)\left(\hat{\bar{U}}_{2}+\hat{\bar{U}}_{1}^{+}\right)-\mathrm{C}_{12} \mathrm{ik}\left(\hat{\overline{\mathrm{~V}}}_{2}-\hat{\overline{\mathrm{V}}}_{1}^{+}\right)-\hat{\bar{T}}_{1}=0 \\
& 3 \mathrm{C}_{12} \mathrm{ik}\left(\hat{\bar{U}}_{2}+\hat{\bar{U}}_{1}^{+}\right)-\left(\mathrm{fs}^{2}+\frac{3 \mathrm{C}_{22}{ }^{\Delta}}{\mathrm{b}}\right)\left(\hat{\overline{\mathrm{V}}}_{2}-\hat{\overline{\mathrm{V}}}_{1}^{+}\right)+3 \hat{\bar{\Sigma}}_{1}+\frac{\mathrm{b}}{\Delta} i k \hat{\bar{T}}_{1}=0 \\
& -\left(f s^{2}+\frac{b}{\Delta} C_{66} k^{2}\right)\left(\hat{\bar{V}}_{2}+\hat{\bar{V}}_{1}^{+}\right)-C_{66}{ }^{\mathrm{ik}\left(\hat{\bar{U}}_{2}-\hat{\bar{U}}_{1}^{+}\right)-\hat{\bar{\Sigma}}_{1}=0} \\
& -\left(f s^{2}+\frac{b}{\Delta} \hat{c}_{11} k^{2}+\frac{\Delta}{b} 3 C_{66}\right)\left(\hat{\bar{U}}_{2}-\hat{\bar{U}}_{1}^{+}\right)+3 C_{66} i k\left(\hat{\bar{V}}_{2}+\hat{\bar{v}}_{1}^{+}\right)+\frac{C_{12}}{C_{22}} \frac{b}{\Delta} i k \hat{\bar{\Sigma}}_{1}+3 \hat{\bar{T}}_{1}=0 \\
& \hat{\bar{\Sigma}}_{1}=E \frac{\Delta}{D}\left(\hat{\bar{V}}_{1}^{+}-\hat{\bar{V}}_{1}^{-}\right) \\
& \hat{\bar{T}}_{1}=\overline{\mathrm{G}}(\mathrm{~s})\left\{\frac{\Delta}{\mathrm{D}}\left(\hat{\bar{U}}_{1}^{+}-\hat{\bar{U}}_{1}^{-}\right)-\frac{i k}{2}\left(\hat{\overline{\mathrm{~V}}}_{1}^{+}+\hat{\overline{\mathrm{V}}}_{1}^{-}\right)\right\}
\end{aligned}
$$

where $\bar{G}(s)$ is the Laplace transform of the relaxation function $G(t)$ with respect to $\tau=t / T_{0}$ and we have used the boundary conditions $\tau_{0}=\tau_{2}=\sigma_{2}=0$. From the above 10 equations we can find 10 unknowns $\left(\hat{\bar{U}}_{0}, \hat{\bar{V}}_{0}, \hat{\bar{U}}_{1}^{-}, \hat{\bar{V}}_{1}^{-}, \hat{\bar{U}}_{1}^{+}, \hat{\bar{V}}_{1}^{+}, \hat{\bar{\Sigma}}_{1}, \hat{\bar{T}}_{1} ; \hat{\bar{U}}_{2}, \hat{\overline{\mathrm{~V}}}_{2}\right.$ ) with given impact function $\hat{\bar{\Sigma}}_{0}$ and once these are calculated the displacement and the stress fields can be computed by inversions of the integral transforms by means of the FFT alogorithm.

## Numerical Results

For the present computation we have used the Young's modulus $E=.7 * 10^{4} \mathrm{psi}$ and the shear modulus $G^{\prime}(\omega)=.817 * 19^{4}-\frac{2.41 * 10^{12}}{3 * 10^{4}+\omega^{2}}$ for the elastomer where $\omega$ is given in hertz. The $G^{\prime}(\omega)$ in this case implies that $G^{\prime}(\infty)=.817 * 10^{4} \mathrm{psi}$ and $\max \left(G^{\prime \prime}(\omega) / G^{\prime}(\omega)\right)=3.3$ at $\omega_{0}=800 \mathrm{~Hz}$.

The propagation of stress wave in this case is quite similar to that of the composite plate without an elastomer layer except the peak values of the interlaminar stress. Values of the peak stress with different thickness of the elastomer layer are plotted with those of the purely elastic plate in Fig. 18. As we can see in this figure the interlaminar shear stress has increased by a small amount while a reduction of the normal stress is considerable when the elastomer layer becomes thicker and thicker. From this result it is obvious that the reduction of the normal component of stress can be achieved by introducing such a soft and energy-dissipating elastomer layer.

## Discussion

In addition to the simple reduction of the normal stress it is also observed that the amount of reduction increases with the value of $G^{\prime \prime}(\omega) / G^{\prime}(\omega)$ and the location of $\omega_{0}$ at which $G^{\prime \prime}(\omega) / G^{\prime}(\omega)$ becomes the maximum value. In other words, we can make the dissipation effect more serious by choosing an elastomer whose $G^{\prime \prime}(\omega) / G^{\prime}(\omega)$ becomes maximum at $\omega_{0}$ around which the most of the impact energy is carried out.

It is also believed that a further dissipation effect will be possible if we make the transmission of the normal stress viscoelastic across the elastomer layer, which we have assumed is elastic for this report.

## IV. IMPACT ON A PLATE WITH A CRACK

## 1. Introduction

When the impact stress is low, the impact is elastic and the stresses in the plate can be described by elastic wave propagation. When the stress is increased beyond a certain limit then the impact damage occurs. Elastic-plastic impact is complicated for two reasons, namely, unloading and loading must be treated differently, and the strain rate effect [30] must be included. If the impact stress is increased further to a certain level where the induced stress is higher than the strength of a target material then penetration begins to occur. In this limit the target material sometimes behaves as a fluid and such a state of impact is known as ahydraulic impact [31]. Another failure mode is the occurrence of interlaminar cracks.

Investigation of the stress state in solids with cracks falls in the category of so-called fracture mechanics and has been under an extensive scrutiny since the famous enunciation by Griffith [32]. Presence of cracks inside a material usually leads us to a mixed boundary value problem and only a limited class of problems can be solved [33,34]. In the case of dynamic loading the problem becomes more difficult due to the scattering of the stress wave by the crack [21-24]. In this report we will formulate the problem of a plate with a crack which is subject to a dynamic loading.

Our original goal was to study the effect of interlaminar cracks in composite plates in response to impact loads. Debugging problems in other parts of this report, however, used valuable time originally set aside for this problem. The following section is an attempt to illustrate the
use of the Mindlin plate theory for the study of interlaminar cracks and to point out the mathematical difficulties that must be overcome in solving the problem.

## 2. Formulation

## Description of Problem

The plate under consideration has a crack on the midplane running from $x_{1}=-h$ to $t h$ as shown in Fig. 19. Stress can be applied either on the surface of the plate or on the crack surface. In the former case the crack surfaces can be in contact and the boundary conditions become more complex due to the partial continuity of stresses and displacements during the contact. For the present report to illustrate the mathematical difficulties we assume that the crack surface is subject to a known compressive impact.

## Governing Equation and Boundary Conditions

We can formulate this crack problem by assuming that the lower and the upper half plates are made of a number of layers but for simplicity we consider the plate to consist of two identical layers and the crack to be present on the interface of these two layers. Following the notation shown in Fig. 19 we have the governing equations identical to Eq. (III-6) with $n=1$ and 2. The boundary condition requires that both plate surfaces remain traction free. The crack surface is subject to a prescribed impact condition while the displacement and stress are continuous along the layer boundary outside the crack. Namely, we have

$$
\begin{align*}
& \sigma_{0}=\tau_{0}=\sigma_{2}=\tau_{2}=0 \\
& \left.\begin{array}{l}
\left.\begin{array}{l}
\sigma_{1}^{+}=\sigma_{1}^{-}=-p_{0}\left(x_{1}, t\right) \\
\tau_{1}^{+}
\end{array}\right\} \tau_{1}^{-}=0
\end{array}\right\}|x|<h  \tag{IV-1}\\
& \left.\begin{array}{rlll}
u_{1}^{+} & =\bar{u}_{1}^{-} & , & v_{1}^{+} \\
\sigma_{1}^{+} & = & v_{1}^{-} \\
\sigma_{1}^{-} & , & \tau_{1}^{+} & \\
\tau_{1}^{-} & =\tau_{1}^{-}
\end{array}\right\}|x|>h \quad .
\end{align*}
$$

Due to the twofold symmetry of the problem we now have $u_{0}=u_{2}$, $v_{0}=-v_{2}, \tau_{1}^{+}=\tau_{1}^{-}=0$ and we can set $u_{1}^{+}=u_{1}^{-}=u_{1},-v_{1}^{+}=v_{1}^{-}=v_{1}$. Thus, the eight equations obtained from Eq. (III-6) are now reduced to

$$
\begin{align*}
& \rho\left(\ddot{u}_{1}+\ddot{u}_{0}\right)=c_{11}\left(u_{1}+u_{0}\right), 11+\frac{c_{12}}{b}\left(v_{1}-v_{0}\right), 1 \\
& \rho\left(\ddot{v}_{1}-\ddot{v}_{0}\right)=-\frac{3 c_{12}}{b}\left(u_{1}+u_{0}\right), 1-\frac{3 c_{22}}{b^{2}}\left(v_{1}-v_{0}\right)+\frac{3 \sigma}{b} \\
& \rho\left(\ddot{u}_{1}-\ddot{u}_{0}\right)=\hat{c}_{11}\left(u_{1}-u_{0}\right), 11-\frac{3 c_{66}}{b^{2}}\left(u_{1}-u_{0}\right)-\frac{3 c_{66}}{b}\left(v_{1}+v_{0}\right), 1+\frac{c_{12}}{c_{22}}, 1  \tag{IV-2}\\
& \rho(\text { IV- } \\
& \left(\ddot{v}_{1}+\ddot{v}_{0}\right)=c_{66}\left\{\frac{1}{b}\left(u_{1}-u_{0}\right), 1+\left(v_{1}+v_{0}\right), 11\right\}+\frac{\sigma}{b}
\end{align*}
$$

and the boundary condition is now

$$
\left.\begin{array}{ll}
\sigma=-P_{0}\left(x_{1}, t\right) & \left|x_{1}\right|<h  \tag{IV-3}\\
v_{1}=0 & \left|x_{1}\right|>h
\end{array}\right\} \quad \text { along } \quad x_{2}=0
$$

## Dual Integral Equation

We now normalize the governing equation (IV-2) and take the integral transform. Then we have
and these can be solved for $\hat{\bar{U}}_{0}, \hat{\bar{U}}_{1}, \hat{\overline{\mathrm{~V}}}_{0}$, and $\hat{\overline{\mathrm{V}}}_{1}$ in terms of $\hat{\bar{\Sigma}}$. Since the mixed boundary conditions are given by $\sigma$ and $v_{1}$ we solve $\hat{\overline{\mathrm{V}}}_{1}$ as

$$
\begin{equation*}
\hat{\overline{\mathrm{V}}}_{1}=\mathrm{K}(\mathrm{~s}, \mathrm{k}) \hat{\bar{\Sigma}} \tag{IV-5}
\end{equation*}
$$

with

$$
\begin{align*}
& K(s, k)=\frac{1}{2}\left[\frac{3}{A}\left(f s^{2}+\frac{b}{\Delta} C_{11} k^{2}\right)+\frac{1}{B}\left\{\frac{C_{12}}{C_{22}} \frac{b}{\Delta} C_{66} k^{2}-\left(f s^{2}+\frac{b}{\Delta} \hat{C}_{11} k^{2}+\frac{3 b}{\Delta} C_{66}\right)\right\}\right] \\
& A=\operatorname{Det}\left|\begin{array}{ll}
\left(f s^{2}+\frac{b}{\Delta} C_{11} k^{2}\right) & , C_{12}{ }^{i k} \\
-3 C_{12} i k & ,\left(f s^{2}+\frac{3 \Delta}{b} C_{22}\right)
\end{array}\right|  \tag{IV-6}\\
& B=\operatorname{Det}\left|\begin{array}{ll}
C_{66}{ }^{i k} & , \\
\left(f s^{2}+\frac{b}{\Delta} C_{66} k^{2}\right) \\
\left(f s^{2}+\frac{b}{\Delta} \hat{c}_{11} k^{2}+\frac{3 \Delta}{b} C_{66}\right) & , \\
\hline-3 C_{66}{ }^{i k}
\end{array}\right| .
\end{align*}
$$

Next we take the inverse transform of $\hat{\bar{\Sigma}}$ and $\hat{\bar{V}}_{1}$, and apply the mixed boundary condition given in Eq. (IV-3). Since the boundary conditions are for all times $\mathrm{t}>0$ we only take the inverse Fourier transform to apply the boundary conditions, i.e.,

$$
\begin{align*}
& \hat{\Sigma}(\eta, s)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{\bar{\Sigma}} e^{-i k n} d k  \tag{IV-7}\\
& \hat{\mathrm{~V}}_{1}(\eta, s)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} K(s, k) \hat{\bar{\Sigma}} e^{-i k \eta_{d k}} .
\end{align*}
$$

Application of the boundary condition given by Eq. (IV-3) results in the following integral equation:

$$
\begin{align*}
& -\hat{\mathrm{p}}_{0}(\eta, s)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{\bar{\Sigma}} e^{-i k \eta} d k \quad|\eta|<h / \Delta \\
& 0=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} K(s, k) \hat{\bar{\Sigma}} e^{-i k \eta} d k:|\eta|>h / \Delta \tag{IV-8}
\end{align*}
$$

for an unknown function $\hat{\bar{\Sigma}}$.

## 3. Discussion

The integral equations of the type given in Eq. (IV-8) are known as dual integral equations, each of which has its own region of application and occur in mixed boundary value problems [35]. There are a number of ways to solve this type of integral equations, such as by reauction to a single Fredholm integral equation or by using the Wiener-Hopf technique [36]. Finding the solution depends on the kernel and in general it is rather difficult to do except for some special cases such as for Bessel kernels or trigonometric kernels.

Once the unknown function $\hat{\bar{\Sigma}}$ is determined the other variables ( $\hat{\bar{U}}_{0}, \hat{\bar{U}}_{1}, \hat{\bar{V}}_{0}, \hat{\bar{V}}_{1}$ ) can be computed by solving the algebraic equation (IV-4) and the complete displacement can be found by inversions of the integral transform.

The problem formulated in this chapter is the simplest impact problem in that the contact of the crack surface does not occur and that it has a twofold symmetry. But it is expected that the critical response of the plate, particularly the stress field near the crack, can be a guideline for a more complex problem.

## V. CONCLUSION AND RECOMMENDED RESEARCH

The present theory is a generalization of Mindin's approximate theory of plate applied to a multilayer plate under impact. By combined use of the finite difference technique in the thickness direction and integral transforms this model has been shown to be very effective for wave propagation analyses.

This model is extended to examine the effects of an elastomer layer between elastic layers of the plate. The reduction of interlaminar normal stress is signficant due to the damping layer but further investigation seems necessary to determine the nature of the reduction.

The presence of a crack in the plate has been formulated. The resulting equations are given by dual integral equations which, as in many cases, are rather difficult to solve.

The basic idea of the periodic structure of the multilayer plate, where the governing equations are derived for each layer and given by a set of difference-differential equations, may be useful to handle different types of problems, such as heat conduction and thermoelastic problems in composite plates.

## References

[1] Mindlin, R.D., - "High Frequency Vibrations of Crystal Plates", Quart. Appl. Math., Vol. 19, p. 51-61 (1961).
[2] Moon, F.C., - "Wave Surfaces Due to Impact on Anisotropic Plates", J. Composite Materials, Vol. 6, p. 62 (1972).
[3] Moon, F.C. and Kang, C.K., - "Analysis of Edge Impact Stresses in Composite Plates", TR to NASA Lewis Research Center, Princeton University (1974).
[4] Moon, F.C., - "One Dimensional Transient Waves in Anisotropic Plate", J. App1. Mech., Trans. ASME, p. 485 (1973).
[5] Moon, F.C., Kim, B.S. and Fang - Landau, S.R., - "Impact of Composite Plates: Analysis of Stresses and Forces", TR to NASA Lewis Research Center, Princeton University (1976).
[6] White, J.E. and Angona, F.A., - "Elastic Wave Velocities in Laminated Media", J. Acoust. Soc. Am., Vol. 27, p. 310 (1955).
[7] Sun, C.T., Achenbach, J.D. and Herrmann, G., - "Continuum Theory for a Laminated Media", J. Appl. Mech., Trans. ASME, p. 467 (1968).
[8] Nayfeh, A.H. and Gurtman, G.A., - "A Continuum Approach to the Propagation of Shear Waves in Laminated Wave Guides", J. App1. Mech., Trans. ASME, p. 106 (1974).
[9] Hegemier, G.A., Gurtman, G.A. and Nayfeh, A.M., - "A Continuum Mixture Theory of Wave Propagation in Laminated and Fiber Reinforced Composites", Int. J. Solids Struc., Vol. 9, p. 395 (1973).
[10] Chao, T. and Lee, P.C.Y., - "Discrete Continuum Theory for Periodically Layered Composite Materials", J. Acoust. Soc. Am., Vol. 57, p. 78 (1975).
[11] Lee, P.Y.C. and Nikodem, Z., - "An Approximate Theory for High Frequency Vibrations of Elastic Plates", Int. J. Solids Struc., Vol. 8, p. 581 (1972).
[12] Dong, S.B. and Nelson, R.B., - "On Natural Vibrations and Waves in Laminated Orthotropic Plates", J. Appl. Mech., Trans. ASME, p. 739 (1972).
[13] Hegemier, G.A. and Nayfeh, A.H., - "A Continuum Theory for Wave Propagation in Laminated Composites, Case 1: Propagation Normal to the Laminates", J. Appl. Mech., Trans. ASME, p. 503 (1973).
[14] Hegemier, G.A. and Nayfeh, A.H., - "A Continuum Theory for Wave Propagation in Laminated Composites, Case 2: Propagation Parallel to the Laminates" J. Elasticity, Vol. 3, p. 125-140 (1973).
[15] Cooley, J.W., Lewis, P.A.W. and Welch, P.D., - "The Fast Fourier Transform Algorithm: Programming Considerations in the Calculation of since, cosine and Laplace Transforms", J. Sound Vib., Vol. 12, p. 315-337 (1970).
[16] Brillouin, L. - Wave Propagation in Periodic Structures, Dover, N.Y. (1946).
[17] Thomson, W.T., - Vibration Theory and Application, Prentice Hall, N.J. (1965).
[18] Mindlin, R.D. and Medick, M.A., - "Extensional Vibrations of Elastic Plates", J. Appl. Mech., Trans. ASME, p. 561 (1959).
[I9] Yan, M.J. and Dowell, E.H., - "High Damping Measurements and Preliminary Evaluation of an Equation for Constrained Layer Damping", AIAA Journal, Vol. 11, p. 388 (1973).
[20] Nakra, B.C. and Grootenhuis, P., - "Structural Damping Using a Four Layer Sandwich", J. Eng. Ind., Trans. ASME, p. 81 (1972).
[21] Achenback, J.D., - "Crack Propagation Generated By a Horizontally Polarized Shear Wave", J. Mech. Phys. Solids, Vol. 18, p. 245 (1970).
[22] Achenback, J.D. and Nuismer, R., - "Fracture Generated by a Dilatational Wave", Int. J. Frac. Mech., Vol. 7, p. 77 (1971).
[23] Nuismer, R.J. and Achenback, J.D., - "Dynamically Induced Fracture", J. Mech. Phys. Solids, Vol. 20, p. 203 (1972).
[24] Keer, L.M. and Luong, W.C., - "Diffraction of Waves and Stress Intensity Factors in a Cracked Layered Composite", J. Acoust. Soc. Am., Vol. 56, p. 1681 (1974).
[25] Levy, H. and Lessman, F., - Finite Difference Equations, MacMillan Co. (1961).
[26] Kim, B.S. and Moon, F., - "Impact on a Laminated Half Space", to be published.
[27] Premont, E.J. and Stubenrauch, K.R., - "Impact Resistance of Composite Fan Blades", Tech. Rep. to NASA Lewis Research Center, NASA CR-134515, Pratt and Whitney Aircraft (1973).
[28] Novak, R.C., - "Multi-Fiber Composites", Tech. Rep. to NASA Lewis Research Center, NASA OR-135062, United Technology (1976).
[29] Christensen, R.M., - Theory of Viscoelasticity, Academic Press, N.Y. (1971).
[30] Christescu, N., - Dynamic Plasticity, North-Holland, New York (1967).
[31] Birkhoff, A. et al, - "Explosives with Lined Cavities", J. Appl. Phys. Vol. 19, p. 563 (1948).
[32\| Griffith, A., - "Phenomenon of Rupture and Flaw in the Solids", Phil. Trans. Roy. Soc. (London), Vo1. A221, p. 163 (1921).
[33] Liebowitz, H., (Ed.) - Fracture, Vol. 2, Academic Press, N.Y. (1968).
[34] Sneddon, I.N. and Lowengrub, M. - Crack Problems in the Classical Theory of Elasticity, John Wiley and Sons, New York (1969).
[35] Sneddon, I.N., - Mixed Boundary Value Problems in Potential Theory, North-Holland, Amsterdam (1966).
[36] Noble, B., - Method Based On the Wiener-Hopf Technique, Pergamon Press, New York (1958).

## Figures

1. Composite Plate and Layer

2 a,b. Dispersion Relationship and Phase Velocity for Isotropic Plate: One-layer Model ( $\lambda=\mu$ ).

3 a,b. Dispersion Relationship and Phase Velocity for Composite Plate: One-layer Model (55\% Graphite Fiber-Epoxy Matrix, Layup Angle $45^{\circ}$ ).

4 a,b. Dispersion Relationship and Phase Velocity for Isotropic Plate: Two-layer Model ( $\lambda=\mu$ ).

5 a,b. Dispersion Relationship and Phase Velocity for Composite Plate: Two-layer Model (55\% Graphite Fiber-Epoxy Matrix, Layup Angle $45^{\circ}$ ).

6 a~f. Longitudinal Propagation Impact Stress in Isotropic Plate: Two-layer Model $\left(\lambda=\mu=1.2 * 10^{7} \mathrm{psi} ; \Delta=1 \mathrm{~cm}, t_{0}=10 \mu \mathrm{sec}\right.$, $\mathrm{a}=4 \mathrm{~cm}$ ) .
7. Transverse Propagation of Normal Stress in Isotropic Plate: 4 -layer Model $\left(\lambda=\mu=1.2 * 10^{7} \mathrm{psi} ; \Delta=4 \mathrm{~cm}, t_{0}=2 \mu \mathrm{sec}, a=40 \mathrm{~cm}\right)$.
8. Transverse Propagation of Normal and Shear Stress in Isotropic Plate: (Same as in Fig. 7).
9. Transverse Propagation of Normal Stress in Composite Plate: 8-layer Model (55\% Graphite Epoxy-Fiber Matrix, Layup Angle $15^{\circ}$; $\left.\Delta=1 \mathrm{~cm}, t_{0}=2 \mu \mathrm{sec}, a=2 \mathrm{~cm}\right)$.
10. Two Dimensional Propagation of Normal Stress in Isotropic Plate: 4 -layer Model $\left(\lambda=\mu=1.2 * 10^{7} \mathrm{psi} ; \Delta=4 \mathrm{~cm}, t_{0}=4 \mu \mathrm{sec}, \mathrm{a}=4 \mathrm{~cm}\right)$.
11. Velocity Surface and Wave Surface of Composite Plate (55\% Graphite Fiber-Epoxy Matrix, Layup Angle $45^{\circ}$ ).

12a,b. Comparison of Theoretical Wave Front and Numerical Wave Front of Composite Plate $10 \mu \mathrm{sec}$ after Impact: $55 \%$ Graphite Fiber-Epoxy Matrix (For Numerical Results; 8-1ayer Model, $\Delta=4 \mathrm{~cm}, t_{0}=4 \mu \mathrm{sec}$, $a=2 \mathrm{~cm}$ ). Without and with Correction Factors.
13. Effect of Correction Factor or Transverse Propagation of Peak Value of Normal Stress: 8-layer Model (55\% Graphite Fiber-Epoxy Matrix, Layup Angle $45^{\circ} ; \Delta=4 \mathrm{~cm}, t_{0}=4 \mu \mathrm{sec}, \mathrm{a}=2 \mathrm{~cm}$ ).
14. Viscoelastic Impact Energy Absorbing Models.

15a,b. Complex Modulus of Elastomer.
16. Plate with Viscoelastic Layers.
17. Impact of Plate Made of 2 Elastic Layers and a Viscoelastic Layer.
18. Peak Value of Interlaminar Stress Vs Elastomer thickness (Two Elastic Layers and a Viscoelastic Layer: ( $\Delta=1 \mathrm{~cm}, t_{0}=10 \mu \mathrm{sec}$, $a=4 \mathrm{~cm})$.
19. Composite Plate with Crack.

plate











Figure 9 Transverse propagation of normal stress in composite plate; 8-layer Model (55\% Craphite Fiber - Epoxy Matrix, $\pm 15^{\circ}$ Layup; $\Delta=1 \mathrm{~cm}$, $t_{0}=2 \mu \mathrm{sec}, \mathrm{a}=2 \mathrm{~cm}$ )



Figure 11. Velocity Surface and Wave Surface of Composite Plate (55\% Graphite FiberEpoxy Matrix, Layup Angle $45^{\circ}$ )


Figure 12a. Wave front $10 \mu \mathrm{sec}$ after impact (without correction factor) (55\% Graphite Fiber-Epoxy Matrix, $\pm 45^{\circ}$ Layup; $\Delta=4 \mathrm{~cm}$, 8 -layer Model; $t_{o}=4 \mu \mathrm{sec}, \mathrm{a}=2 \mathrm{~cm}$ )


Figure 12b. Wave front $10 \mu \mathrm{sec}$ after impact (with correction factor) (55\% Graphite Fiber-Epoxy Matrix, $\pm 45^{\circ}$ Layup; $\Delta=4 \mathrm{~cm}$, 8-layer Model; $t=4 \mu \mathrm{sec}, a=2 \mathrm{~cm}$ )



Figure 14. Viscoelastic Impact Energy Absorbing Models


FIGURE 15a SHEAR NODULUS AND LOSS TANGENT AT $T^{\circ} \mathrm{F}$ vs FREQUENCY FOR DUPONT LR3-604


FIGURE 15b. THE COMPLEX YOUNG'S $\because: O O U L U S$ OF LR3-604 : BEASURED

Figure 16. Plate with Viscoelastic Layers

Figure 17. Impact of Plate Made of 2 Elastic Layers
*Calculated values

$$
\infty^{-1} \|_{\infty}^{0}
$$

$\underset{i}{\sim}$




Figure 19. Composite Plate with Crack

In this flow chart and program, $U(I, J), V(I, J), \operatorname{TAU}(I, J)$ $\operatorname{SIGMA}(I, J)$ and $\operatorname{SIGMAI}(I, J)$ represent $\hat{\bar{U}}, \hat{\overline{\mathrm{~V}}}, \hat{\overline{\mathrm{~T}}}$ and $\hat{\bar{\Sigma}}$ in Eq. (II-17,18) and integral transform of $\sigma_{11}$
(i) Define the variables (U,V,TAU, SIGMA) for displacement and stress fields in matrix form
(ii) Define other working matrices
(iii) Supply the core space for the matrices

(i) Read and write the data for geometry of composite plate. NLAYER: Number of layers in plate DELTA: Thickness of the plate (in cm) RHO: Density of the composite (in $\mathrm{gr} / \mathrm{cm}^{3}$ )
(ii) Calculate the $B$ (half of the layer thickness)
(iii) Convert all quantities in MKS unit
(i) Read and write all the impact data

NA: Impact radius by integer multiple of plate thickness (A = NA* DELTA)

TAUO: Impact time (in second)
(ii) Read and write all the data of integral steps

NX: Total step number in space
NT: Total step number in time
NXIMP: Step number in impact radius
NTIMP: Step number in impact time
(iii) Calculate step size in time and space

Space: $\quad D X=A / N X I M P$
Time: $\quad \mathrm{DT}=\mathrm{TAUO} / \mathrm{NTIMP}$
(i) Calculate normalization units

Space: UNITX = DELTA (Thickness of the plate)
Time: $\quad$ UNITT $=A / \sqrt{E_{66} / \text { RHO }}$ (Time refuired for the quasishear wave to travel the impact radius)
(ii) Normalized all quantities by UNITT and UNITX
(iii) Calculate integral limits ( $\omega_{0}$ and $k_{0}$ ) in Fast Fourier Transform

Calculate $\mathrm{QO}(\mathrm{I}, \mathrm{J}), \operatorname{CBX}(\mathrm{I}, \mathrm{J}), \operatorname{CAX}(\mathrm{I}, \mathrm{J}), \operatorname{XIBX}(\mathrm{I}, \mathrm{J}), \operatorname{YIAX}(\mathrm{I}, \mathrm{J}) \ldots$. Y3AX $(I, J)$, over a half of the range of integration ( $\mathrm{I}=1 \sim \mathrm{NT}, \mathrm{J}=1, \mathrm{NX} / 2$ ).
QO: Impact function given in Eq. (II-22)
CBX, CAX: $\cos \beta$ and $\cos \alpha$ in Eq. (II-16,17) by DPHASE
X1BX, X2BX ...: $X_{1}(\beta), X_{2}(\beta)$ in Eq. (II-18,19) by DELL
Y1AX, Y2AX ...: $Y_{1}(\alpha), Y_{2}(\alpha)$ in Eq. $(I I-18,19)$ by DELL

Invert (see Block A) and check the impact function $\sigma_{0}$ with QO


Over the range of data generation ( $\mathrm{I}=1 \sim \mathrm{NT}, \mathrm{J}=1 \sim \mathrm{NX} / 2$ )

$$
\text { Calculate } \alpha \text { and } \beta \text { from } \cos \alpha \text { and } \cos \beta
$$

$$
\text { Calculate } D, . D_{1}, \ldots \text { in Eq. (II-23) from DET }
$$

$$
\text { Calculate } \cos 2 n \beta, \cos 2 n \alpha, \sin 2 n \beta \text { and } \sin 2 n \alpha
$$

$$
\text { Calculate } U(I, J), V(I, J), \operatorname{TAU}(I, J) \text {, and } \operatorname{SIGMA}(I, J)
$$

in transformed space by Eq. (II-18,23)

```
Invert (see Block A) U U , V V , T 
```

Calculate the tangential normal stress SIGMAl(I,J) by Eq. (II-24) in integral transformed space and invert (see Block A)

(i) Data $\mathrm{xx}(\mathrm{I}, \mathrm{J})$ in integral transformed space are generated for a half of the inverse transform range: $I=1 \sim N T$, $\mathrm{J}=1$ ~ $\mathrm{NX} / 2$
(ii) Generate full data over $J=1 \sim N X$ by FLIP Symmetric flip: V(I,J), SIGMA(I,J), SIGMAl(I,J),QO(I,J) Antisymmetric flip: U(I,J), TAU(I,J)
(iii) Invert them for displacement and stress fields by FOURT
(iv) Take care of the coordinate shifts and multiplication factors in FOURT by FACT
(v) Print out by MAP

```
C
C
c. THIS program calculates the transient propagation of stress wave
C In a laminated composite plate due to a ngrmal impact.
IANGLE: FIBER LAYUP ANGLE IN COMPOSITES CII,C12.. : ELASTIC MODULI OF COMPOSITE LAYER(IN PSI)
NLAyER: number of the layers in the given plate D, DELTA: THICKNESS OF COMPCSITE PLATE(IN CM) RHO: MASS DENSITY OF COMPCSITE LAYER(IN GR/CM**こ)
na: Radius of the impact as a multiple of the plate thickness TAUO: IMPACT TIME(IN SECOND)
NX: NUMBER OF INEGRATION STEPS IN SPACE NT: NUMBER OF INTEGRATION STEPS IN TIME DOMAIN NXIMP: NUMBER OF SPACE STEPS IN IMPACT RADIUS NTIMP: NUMRER OF TIME STEPS IN IMPACT TIME
2. WIth the above data following primary data are calculated
```

MAIN
DATE $=77135$

```
    E: A HALF OF THE LAYER THICKNESS
    K: WAVE NUMBER FOR FOURIER TRANSFORM
    S: LAPLACE TRANSFORM VARIABLE
    KO: LIMIT OF INTEGRATION FCR INVERSE FOURIER TRANSFORM FOR X
    OMEGAO: LIMIT OF INTEGRATION FOR INVEFSE TRANSFOR:M IN TIME
    CO: LAPLACE TRANSFORM PARAMETER
    3. DISPLACEMENT AND STRESS FIELDS ARE CALCULATED IN TRANSFORMED SPACE
    AND BY INVERSIONS THESE BECOME DISPLACEMENTS AND STRESSES.
    THEY ARE GIVEN IN A MATIX FORM AS XX(I,J) REPFESENTING QUANTITY AT
    ITH TIME STEP AND JTH SPACE STEP IN X
        U(I,J): HRIZONTAL DISPLACEMENT
        V(I,J): VERTICAL DISPLACEMENT
        SIGMA(I,J): NORMAL STRESS
        TAU(I,J): SHEAR STRESS
        SIGMAI(I,J): TANGENTIAL NORNAL STRESS
4. FOLLOWINGS ARE WORKING MATRICES FOR THIS PROGFAM
        DATA(I,J), SUB(I,J): WORKING MATRICES FOR SUBROUTINE FOURT
        QO(I,J): INTEGRAL TRANSFORM OF IMPACT FUCTION GIVEN IN EQ(II-22)
        CAX(I,J), CBX(I,J): COS(ALPHA) AND COS(BETA) IN EQ(II-16)
        X1BX(I,J), Y1AX(I,J),..: XI(BETA), Y1(ALPHA),.. IN EQ(II-18)
    5. fOLLOWING SUBROUTINE ARE SUPPLIED IN THE PRESENT PROGLAM
        OPHASE: CALCULATES COS(BETA) AND CCS(ALPHA) IN EQ(II-16) WITH GIVF:
        VALUES OF WAVE NUMEER K AND LAPLACE TRANSFORM VARIABLE
        DELL: CALCULATES XI(EETA), Y1(ALPHA),.. IN EQ (II-19,20)
```

        IMPLICIT REAL*8(K)
        COMPLEX DATA(32,64),SUB(32,32),CAX(32,32),CBX(32,32),Q0(32,32)
        COMPLEX SIGMA(32,32),SIGMA1(32,32), TAU(32,32)
        COMPLEX U( 32,32\(), V(32,32), V \times(32,32)\)
        COMPLEX Y1AX \((32,32), Y 2 \Delta X(32,32), Y 3 A X(32,32)\)
        COMPLEX X1BX(32,32),X2BX(32,32),X3BX(32,32)
        DIMENSION NN(2),MM(32)
    $c$
REAL*8 C11,C12,C22,C66,CHAT,E66,V66,PI,P2
REAL*8 DCOS, OSIN,DBLE,DSQRT, CFLOAT, DLCG
REAL* 8 DELTA,D,RHO,FN,F,KX(32), B, TAUO, A, DX, DT, UNITT,UNITX
REAL*8 Q,OMEGAO,BL,C)
c
COMPLEX $=16$ CDEXP, CDLOG,CDSQRT,CDCOS,CDS IN
COMPLEX $\because 16$ BETA,ALPHA,CB,CA,SE,SA,C2NB,C2NA,S2NB, S2NA
COMPLEX $* 16$ S,SI,S2,D1,D2,D3,04
COMPLEX*16 Y1A,Y2A,Y3A,X1B,X2E,X3B
C
COMMON Y1A,Y2A,Y3A,X18,X2B,X3E,D1,D2,D3,04,C11,C12,C22,C66,CHAT
Equivalence (Delta, D)
EQUIVALENCE (DATA(1,1),SUB(1,1))
C
$S I=(0.000,1.000)$
$P I=3.1415926536000$
P2=PI*2.0 00
I NDEX=0
INDEX $=1$
c
WRITE(6,4)
FORMAT('1'///////////////20X,'\#tぁ WAVE PROPAGATION IN COMPOSITE P
lLATE \#\#\# ${ }^{\prime}$

```
GELEASE 2.0
MAIN
DATE = 7713s
    21/11/39
    WRITE(6,5)
5 FORMAT(22X,'GRAPHITE FIBER(55%)-EPCXY MATRIX COMPOSITE')
C
```



```
C
C
C INPUT DATA FOR ELASTIC PROPERTIES OF COMPOSITE PLATE
C ALL THE DATA ARE SUPPLIED IN PSI UNIT BUT NORMALIZED BY CGG
C WHICH IS CONSTANT REGARDLESS THE LAYUP ANGLE
C
    READ (5,101) I ANGLE,C11,C12,C22,C66
    FORMAT(I10,4015.7)
    CHAT=C11-C12**2/C22
    IF (IANGLE.EQ.100) GO TO 200
    WRITE(6,102) I ANGLE,C11,C12,C22,C66
102 FORMAT(// 20X,'LAYUP ANGLE=',I3,3X,'DEGREE'
    $ /20X,'C(1,1)=',D12.5,' PSI',10X,'C(1,2)=',D12.5,' PSI'
    $/20X,'C(2,2)=',D12.5,' PSI',10X,'C(6,G)=',D12.5,' PSI'//)
    GO TO 201
200 CONTINUE
    WRITE(6,210) C11,C12,C22,C66
210 FORMATI/2OX,' PLATE IS ISOTROPIC WITH POISSCN'IS RATIO 1/4'
    $ /20X,'C(1,1)=',D12.5,' PSI',10X,'C(1,2)=',D12.5,' PSI'
    $/20X,'C(2,2)=',D12.5,' PSI',1JX,'C(6,6)=',D12.5,' PSI'//)
201 CONT INUE
C
    566=C66*6892.2D 00
    C11=C11/C66
    C12=C12/C66
    C22=C 22/C66
    CHAT=CHAT/C66
    C66=1.D 00
C
Cれ**%れ%* WITH CORRECTION FACTOR
C
    C66=PI**2/12.D OO
    C22=C22*CE6
C
C
C
C
INPUT DATA FOR GEOMETRY CF COMPESITE PLATE
ALL THE DATA ARE FIRST SUPPLIED IN CGS UNIT GUT CONVERTED INTO MKS UNIT
NLI = NLAYER + 1
```FN=DFLOAT(NLAYER)
    B=DELTA/FN
    WRITE(6,121) DELTA,RHO,NLAYER,B
    WRITE(6,61) A,DX,TAUO,DT
    FORMATI2OX,'CONTACT RADIUS ; A=',D12.5,' M'/
        $20X,'SPACE STEP ; DX=',D12.5,' M'/
        $20x,'CONTACT TIME ; TAUO=',D12.5,' SECOND'/
        $23X,'TIME STEP ; DT=',D12.5,' SECOND'//)
C
```

INPUT DATA FOR IMPACT

PREAD (5,60) NA,TAUO
FORMAT(I 10,D20.10)
READ(5,111) NX,NT,NXIMP,NTIMP
FORMAT(4110)
WRITE(6,112) NX,NXIMP,NT,NTIMP
FORMATI20X,'TOTAL SPACE STEPS; NX=', I3,5X,'WITH',I3, 2 X, 'STEPS FOR \$ Contact Radius'/ \$2JX,'TOTAL TIME STEPS ; NT=',I3,5X,'WITH',I3,2X,'STEPS FOR CONTAC \$T TIME'//)

$$
A=D F L O A T(N A) * D E L T A
$$

DX=A/DFLOAT(NXIMP)
DT=TAUO/DFLOAT(NTIMP)
WRITE(6,61) A,DX,TAUO,DT
FORMAT(20X,'CONTACT RADIUS ; A=',D12.5,' M'/ \$20X,'CONTACT TIME ; TAUO=',D12.5,' SECOND'/ \$23X,'TIME STEP ; DT=',D12.5,' SECOND'//)
$\qquad$
normalize all the input data

V66 $=$ DSQRT(E66/RHO)

UNITT=A/VEG
UNITX=DELTA
$F=D * D * E \mathrm{HO} /(E 66 \div$ UNITT**2)/2.D OO/FN
$c$
$N \times 2=N X / 2$
$N N(1)=N T$
$N N(2)=N X$
$D X=D X / U N I T X$
$D T=D T / U N I T T$
ORIGINAL PAGE IS
DE POOR QUALITY
KO=PI/DX
OMEGAO=PI/DT
$B L=\Delta / D$
$C O=D L O G(1 . D 06 \div 2 . D 00 * D T) /(3 . D 00 \neq C T \approx D F L O A T(N T))$
c
C
C

C
C
CALCulate the impact input function qo(i,j) in eq(il-22)
C CALCULATE COS(BETA) AND COS(ALPHA) IN EQ(II-16) BY SUBROUTINE DPHASE C CALCULATE XI(BETA), Yl(ALPHA),.. BY SUBROUTINE DELL

DO $30 \mathrm{~J}=1$, NX2
$K=2 . D$ OO*K $0 *(D F L O A T(J)-.5) / D F L O A T(N X)-K O$
$K 2=K \div * 2$
$K X(J)=K$
$Q=P I * * 2 / \operatorname{DSQRT}(P 2) * \operatorname{DSIN}(K * B L) / K /((K * B L) * * 2-P I * * 2)$
$c$
DO $30 \mathrm{I}=1$, NT
$S=C O+S I * O M E G A O *(1.0$ OO-(DFLOAT(I)-.5D OO)*2.D OO/DFLOAT(NT))
S2 $=5 \# \# 2 * F$
QO(I, J) $=Q / 2 . / S *(1 . D \quad 00-\operatorname{CDEXP}(-S * T A \cup O / U N I T T)) *(P 2 * U N I T T) * * 2$
\$ $/((S * T A \cup O) * * 2+(P 2 * U N I T T) * * 2)$

C
CALL DPHASE (K,S2,CB,CA,NLAYER)
CEXII,J)=CB
$\operatorname{CAX}(I, J)=C A$
C
CALL DELL(K,S2,CB,CA,SI,NLAYER)
YIAX(I,J)=Y1A
$Y 2 A X(1, J)=Y 2 A$
$Y 3 A X(I, J)=Y 3 A$
$X 18 \times(1, J)=X 18$
$\times 23 \times(I, J)=X 2 B$
$\times 3 B \times(I, J)=X 3 B$
C

```
ELEASE 2.0
C
C
C
C################################################################################################
C
C
C REPRODUCE THE IMPACT FUNCTION TC CHECK INPUT
C
    OO 300 I=1,NT
    DO 300 J=1,NX2
300
    SUB(I,J)=QO(I,J)
    CALL FLIP(DATA,NX,NX2,NT,+1)
    CALL FOURT(DATA,NN,2,-1,1,0)
    CALL FACT(DATA,NX,NT,CO,OMEGAO,KO,PI,SI)
    WRITE(6,301)
301 FORMAT('l'///////////////20X, '#&* REPRCDUCTION OF IMPACT FUNCTIO
    1N #**')
    CALL MAP(DATA,NX,NT,NX2,MM,INDEX)
C
C
C
C############################################################################################
C
C
C THIS IS THE MAIN PART OF. THE PRCGRAM.
C
C CALCULATE D(BETA),DBAR(ALPHA),.. IN EQ(II-19,20) BY SUBROUTINE DET
C NEXT CALCULATE 1,V,.. IN EQ(II-18) IN TRANSFORMED SPACE
C AND FLIP TO FIND FULL DATA AND INVERT THEM BY MEANS OF FOURT.
C REPEAT THIS PROCESS FROM N=0 TO NLAYER
C
        DO 11 N=1,NL1
        NY=N-1
        NYY=NY-1
C
C
C
C
C
    gENERATION OF DATA FOR DISPLACEMENTS ANC STRESS IN TRANSFORMED SPACE
        DO 100 J=1,NX2
        OO 100 I=1,NT
        CB=CBX(I,J)
        CA=CAX(I,J)
        X1B=X1BX(I,J)
        X2B=X2RX(I,J)
        x38= X38\times(I,J)
```

```
fELEASE 2.0
YlA=Y1AX(I,J)
Y2A=Y2AX(I,J)
Y3A=Y3AX(I,J)
```

```
SB=CDSQRT(1.D 00-CB#*2)
SA=CDSGRT(1.D 00-CA##2)
BETA=CB+SI*SB
ALPHA=CA+SI*SA
8ETA=CDLOG(BETA)/SI
ALPHA=CDLOG(ALPHA)/SI
CALL DET(ALPHA,BETA,SI,FN)
C2NB=CDCOS(2.D 00*BETA*DFLOAT(NY))
S2NB=CDSIN(2.D 00*BETA*DFLOAT(NY))
C2NA=CDCOS(2.D 00*ALPHA*DFLCAT(NY))
S2NA=CDSIN(2.D 00*ALPHA*DFLOAT(NY))
```

```
U(I,J)=(X1B*(Dl*C2NB+SI*D2*S2NB)+Y1A*(D4*C2NA+SI*D3*S 2NA)) #QO(I,J)
```

U(I,J)=(X1B*(Dl*C2NB+SI*D2*S2NB)+Y1A*(D4*C2NA+SI*D3*S 2NA)) \#QO(I,J)
V(I,J)=(X2B*(D2*C2NB+SI*DI*S2NB)+Y2A*(D3*C2NA+SI*D4*S2NA))*QO(I,J)
V(I,J)=(X2B*(D2*C2NB+SI*DI*S2NB)+Y2A*(D3*C2NA+SI*D4*S2NA))*QO(I,J)
TAU(I,J)=(X3B*(D2*C 2NB+SI*DI*S 2NB)+(D3*C2NA+SI*D4*S2NA))*QO(I,J)
TAU(I,J)=(X3B*(D2*C 2NB+SI*DI*S 2NB)+(D3*C2NA+SI*D4*S2NA))*QO(I,J)
SIGMA(I,J)=((CI*C2NB+SI*D2*S2NB)+Y3A*(D4*C2NA+SI*D3*S2NA))*QO(I,J)
SIGMA(I,J)=((CI*C2NB+SI*D2*S2NB)+Y3A*(D4*C2NA+SI*D3*S2NA))*QO(I,J)
CONTINUE
CONTINUE
INVERSION AND PRINTOUT OF HORIZCNTAL DISPLACEMENT UN(I,J)
DO $10 \mathrm{I}=1$, NT
DO $10 \mathrm{~J}=1, \mathrm{NX} 2$
SUB(I, J)=U(I, J)
CALL FLIP(DATA,NX,NX2,NT,-1)
CALL FOURT(DATA,NN, $2,-1,1,3)$
CALL FACT(DATA,NX,NT,CO, OMEGAO,KO,PI,SI)
WRITE(6,981) NY
FORMAT('1'//////////////20X,'U',I3)
CALL MAP(DATA,NX,NT,NX2,MM,INDEX)
INVERSION AND PRINTOUT OF VERTICAL DISPLACEMENT VN(I,J)
DO $201=1$,NT
DO 2.J $\mathrm{J}=1, \mathrm{~N} \times 2$
$\operatorname{SUB}(I, J)=V(1, J)$
CALL FLIP(DATA,NX,NX2,NT,+1)
CALL FOURT(DATA,NN,2,-1,1, 3 )

```

CALL FACTIDATA,NX,NT,CO,OMEGAO,KO,PI,SI)
WRITE(6,982) NY
FORMAT('1'///////////////20X,'V',I3)
CALL MAP(DATA,NX,NT,NX2,MM,INDEX)

INVERSION AND PRINTOUT OF SHEAR STRESS TAU(I,J)
DO \(35 \mathrm{I}=1\), NT
DO \(35 \mathrm{~J}=1, \mathrm{NX2}\)
\(\operatorname{SUB}(I, J)=T A U(I, J)\)
CALL FLIP(DATA,NX,NX2,NT,-1)
CALL FOURT(DATA,NN,2,-1,1,0)
CALL FACT(DATA,NX,NT,CO,OMEGAO,KO,PI,SI)
WRITE 6,983\()\) NY
FORMAT('l'//////////////20X,'TAU',I3)
CALL MAP(DATA,NX,NT,NX2,MM,INDEX)

INVERSION AND PRINTOUT OF NORMAL STRESS SIGMA(I,J)
DO \(40 \mathrm{I}=\mathrm{I}\), NT
DO \(40 \mathrm{~J}=1, \mathrm{NX} 2\)
SUB(I, J)=SIGMA(I,J)
CALL FLIP(DATA,NX,NX2,NT,+1)
CALL FCURT(DATA,NN,2,-1,1,0)
CALL FACT(DATA,NX,NT,CD,OMEGAO,KO,PI,SI)
WRITE 6,984\()\) NY
FORMAT('1'///////////////20X,'SIGMA',I3)
CALL MAP(DATA,NX,NT,NX2,MM,INCEX)

INVERSION AND PRINTOUT OF TANGENTIAL NORMAL STRESS SIGMAI(I,J)
IF (NY.EQ.O) GO TO 160
DO \(50 \quad I=1\),NT
DO \(50 \mathrm{~J}=1, \mathrm{NX} 2\)
SUB(I, J) \(=\) SIGMAI(I, J) + FN*C12*V(I, J)
CALL FLIP(OATA,NX,NX2,NT,+1)
CALL FOURT(DATA,NN,2,-1,1,0)
CALL FACT(DATA,NX,NT,CO,OMEGAO,KO,PI,SI)
WRITE(6,985) NYY
```

il FSLEASE 2.0
985 FORMAT('1'///////////////20X,'SIGNAI',I3)
CALL MAP(CATA,NX,NT,NX2,MM,INDEX)
C
IF (NY.EQ.NLAYER) GO TO 70
DO 51 I=1,NT
DO 51 J=1,NX2
51SIGMAI(I,J)=-SI*KX(J)*C1l*U(I,J)-FN*Cl2*VX(I,J)
GO TO 80
C
160 CONTINUE
DO 161 I=1,NT
DO 161 J=1,NT
1\in1 SIGMAI(I,J)=-SI*KX(J)*CII*U(I,J)-FN*C12*V(I,J)
GO TO 80
C
70 CONTINUE
DO 71 I=1,NT
OO 71 J=1,NX2
71 SUB(I,J)=-SI*KX(J)*Cl1*U(I,J)+FN*C12*(V(I,J)-VX(I,J))
CALL FLIP(DATA,NX,NX2,NT,+1)
CALL FOURT(DATA,NN,2,-1,1,0)
CALL FACT(DATA,NX,NT,CO,OMEGAO,KO,PI,SI)
WRITE(\epsilon,985) NY
CALL MAP(DATA,NX,NT,NX2,MM,INDEX)
GO TO 90
C
80 CONTINUE
DO 81 I=1,NT
DO }31\textrm{J}=1,NX
81 VX(I,J)=V(I,J)
C
90 CONTINUE
C
C
11 CONTINUE
C

```

```

C
C
C
C
STOP
END

```
```

C
C
C\&\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
C
C THIS SUBROUTINE CALCULATES THE PHASE SHIFT BETA AND ALPHA FROM
C EQ(II-15,16) OF THE PRESENT REPORT WITH GIVEN VALUES OF
C WAVE NumEER K and laplace transform variable S
C
C CA=COS(ALPHA)
C CB=COS(BETA)
C
C\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
C
C
SUBROUTINE DPHASE(K,S ,CB,CA,NLAYER)
IMPLICIT COMPLEX*16(A,X,Y)
COMPLEX*16 ROOTP,ROOTM,S,CDSQRT,DCMPLX,DCB,DCA
COMPLEX*16 D1,D2,D3,D4
COMPLEX*16 CB,CA
REAL*8 C11,C12,C22,C66,CHAT,N,K2,DFLOAT,DBLE,K
C
COMMON Y1A,Y2A,Y3A,X1B,X2B,X3B,D1,D2,D3,D4,C11,C12,C22,C66,CHAT
ROOTP(AA,AB,AC)=(-AB+CDSQRT(AB*\#2-4.D 00*AA*AC))/(2.D 00*AA)
ROOTM(AA,AB,AC)=(-AB-CDSQRT(AB**2-4.D 00*AA*AC))/(2.D 00*AA)
C
N=DFLOAT(NLAYER)*2.D 00
K2=K**2
C
C
Al=(K2*C11/N+S)*(K2*CE6/N+S)
A2=K2*CHAT/(3.D 00*N)+N*C66+S/3.D 00-C12*C66*K2/13.D 00*N*C22)
A2=A2*(-C12*K2/(3.D 00*N) +N*C22+S/3.D 00)
A3=N*C22+S/3.D OJ-K2*C12*(C66*K2/N+S)/(9.D 00*N**2*C22)+C66*K2/
\$ (3.0 00%N)
A3=A3*(C11*K2/N+S)-K2*(C12+C66)**2
A3=A3+(C66*K2/N+S) =(CHAT*K2/(3.0 00*N) +N*C66+S/3.+C12**2*K2/
\$ (3.D 00*C22))
C
AA =A1+A2-A3
AB=A3-2.D 00*A2
AC=A2
DCB=ROOTP(AA,AB,AC)
DCA=ROOTM(AA,AB,AC)
C
CB=CDSQRT(DCB)
CA=CDSQRT(DCA)
RETURN
END


```
THIS SUBROUTINE CALCULATES DELTA(BETA),DELTABAR(ALPHA), DELTAI(BETA),..
``` IN EQ(II-19,20) AND X1(BETA),Y1(ALPHA) IN EQ(II-18,19,20)
\(X 1 B=X 1(B E T A), Y \perp A=Y 1(A L P H A)\)
-

C
C
SUBROUTINE DELL (K,S,CB,CA,SI,NLAYER)
IMPLICIT REAL*8(K), COMPLEX \(=16(S, X, D, Y)\)
COMPLEX \(=16\) SB,CB,CDSQRT,SA,CA
REAL*8 N.OFLOAT
REAL*8 C11,C12,C22,C66,CHAT
C
COMMON Y1A,Y2A,Y3A, X1E,X2B,X3E,D1,D2,D3,D4,C11,C12,C22,C66,CHAT
C
```

K2=Kれた2
N=DFLOAT(NLAYER)

```

C
C
```

        S11=S+C11%K2/2.D 00/N
        S66=S+C66*K2/2.0 00/N
        SA=CDSQRT(1.D 00-CA**2)
        SB=CDSQRT(1.D OO-CS**2)
    ```
C
C
```

    DELTAB=CB**3*S11*S66+SB**2*CB*(-C66*(C66+C12) %K2
    \$ +S66*(S/3.D 00+CHAT*K2/6.C 00/N+2.D 00*N*(06))
DEL1E=SI*K*SB**2*CB*(-C66-C12+C12*S66/6.0 00/N/C 22)
DEL2B=SI*SB**3*(C12*C66*K2/6.D 00/N/C22-S/3.D 00
\$ -CHAT\#K2/6.D 0./N-2.D J0*N*C66)-SI\#CB\#*2*SB*S11
DEL3B=CB**2*SB*(C12*K*S11*S66/6.D 00/N/C22-C66*K%S11)
\$ +SB**3*\&C12*K*(S/3.D 00+CHAT*K2/6.D 00/N+2.D 00*N*C66)
\$ - C12**2*C66*K*K2/6.D 00/N/C22)

```

C
```

DELTAA=SI*CA**2*SA*((C12+C60́)*C66*K2-S66*(S/E.D 00+CHAT*K2
\$ /6.D 0)/N+2.D 0)%N*C66+C12%*2*K2/6.0 00/N/C221)
\$ +SI*SA**3*(S/3.D 00+2.D 00*N*C22)*(C66*C12*K2/6.D 00/N/C22
\$ -S/3.D 00-CHAT\#K2/6.D 00/N-2.D 00%N*C66)
DEL1A=SA**2*CA*(-K2*C12*S66/6.D 00/6.[ 00/N**2/C22+C66*K2/6.D 00/N
\$ +S/3.D 00+2.D 00%N*C22)+CA**3*S66
DEL2A=CA**2*SA*K*(C12+C66)

```
\(\$ \quad / N+2 . D \quad 00 * N *(66))\)
        \(X 1 B=-D E L 1 B / D E L T A B\)
        \(X 2 B=-D E L 2 B / D E L T A B\)
        \(X 3 B=-D E L 3 B / D E L T A B\)
        Y1A=-DELIA/CELTAA
        \(\dot{Y} 2 A=-D E L 2 A / D E L T A A\)
        \(Y 3 A=-D E L 3 A / D E L T A A\)
c
    RETURN
    END
```

C

```
C

C
C THIS SURROUTINE CALCUALTES D,D1,.. IN EQ(II-23) OF THE PRESENT REPORT
C

C
C
        SUBROUTINE DET (ALPHA, BETA,SI,FN)
        IMPLICIT COMPLEX*16(D,X,Y)
        COMPLEX*16 ALPHA,BETA
        COMPLEX*16 C2NB,C2NA,S2NA,S2NE,CDSQRT,SI
        REAL*8 FN
        REAL*8 C11,C12,C22,C66,CHAT
    C
    C
        \(C 2 N A=\operatorname{CDCOS}(2.000 * A L P H A * F N)\)
        S2NA \(=\operatorname{CDSIN}(2.0\) 00*ALPHA*FN)
        \(C 2 N B=\operatorname{CDCOS}(2.0 \quad 00 * B E T A * F N)\)
        \(\operatorname{S2NB}=\operatorname{CDS} \operatorname{IN}(2.0 \quad 00 * B E T A * F N)\)
    C
        \(X=Y 3 A * \times 3 B *(1 . D\) 00-C2NA*C2NB)
        \(Y=X 3 B * Y 3 A * S 2 N B * C 2 N A-S 2 N A * C 2 N B\)
    C
        \(D=-2 \cdot 0 \quad 00 * X+(1 . D 00+X 3 B * * 2 * Y 3 A * * 2) * S 2 N A * S 2 N B\)
        \(D 1=-(X-S 2 N A * S 2 N B)\)
        D \(2=-S I * Y\)
        D3 \(=\mathrm{SI} \ddagger \mathrm{Y} \# \times 3 \mathrm{~B}\)
        D4 \(=X 3 B *(X 3 B * Y 3 A * S 2 N B * S 2 N A+C 2 N A * C 2 N B-1 . D 00)\)
    c
        \(01=01 / 0\)
        D2 \(=0210\)
        D3=0ラ/D
        D4=D4/D
    c
        RETURN
        END
c
C

C
c
c all the data in the main program are generated for only half of the
C PLATE WHEN X>O. DUE TO SYMMETRY OF THE PROBLEM WE CAN GENERATE the full data by flipping the half of the data.
\(C\)
\(C\)
c

C
c
SUBROUTINE FLIP(DATA,NX,NX2,NT, INDEX)
COMPLEX DATA(NT,NXI
DO \(10 \mathrm{~J}=1, \mathrm{NX} 2\)
\(J J=N X+1-J\)
DO \(10 \mathrm{I}=1\), NT
DATA \(I, J J)=F(O A T(I N D E X) * D A T A(I, J)\)
10 CONTINUE RETURN END

C
C

C
C
C this subroutine takes care of the coorioinate shift in

C

c
C
SUBRCUTINE FACTIDATA,NX,NT,CO,WO,KO,PI,SI)
COMPLEX DATA(NT,NX)
COMPLEX*16 CDEXP,SI
REAL*8 DEXP,DSQRT,DFLCAT
REAL*8 CO,WO,PI,KO,FT,FX
FX=DFLOAT(NX)
FT=DFLCAT(NT)
\(\mathrm{NX} 2=\mathrm{NX} / 2\)
\(c\)
DO \(10 \mathrm{~L}=1, \mathrm{~N} \times 2\)
DO \(10 \mathrm{M}=1\),NT
DATA(M,LI=DATA(M,L)\#4.D \(00 \neq K 0 * W O /(D S Q R T(2 . D ~ 00 * P I) \neq \# 3 * F T * F X)\)
\$ *DEXP(CO*PI*DFLOAT(M-1)/WO)*CDEXP(SI*PI*(1.D 00-1.D 00/FX)
\$ *DFLOAT(L-1))*CDEXP(SI*PI*(1.D 00-1.D O0/FT)*DFLOAT(M-1))
10
CONTINUE
RETURN
END

\section*{C}

```

C
C
C
C
c
C
this subrout ine controls the format of the printout of the final results
C
IF INDEX=0: all the numerical values are printed =1: THE MAXIMUM AND NORMALIZED VALUES ARE PRINTED
C
SUBRRUTINE MAP(DATA,NX,NT,NX2,MM,INDEX)
COMPLEX DATA(NT,NX),S
DIMENSION MM(NX2)
IF (INDEX.EQ.1) GO TO 200
DO 44 IQ=1,NT
44 WRITE(6,15) IQ,(DATA(IQ,I),I=1,NX2)
F FORMAT(I5,2E14.5,2X,2E14.5,2X,2E14.5,2X,2E14.5/
\$ 3(5X,2E14.5,2X,2E14.5,2X,2E14.5,2X,2E14.5/)/
\$ 4(5X,2E14.5,2X,2E14.5,2X,2E14.5,2X,2E14.5/)/)
205 CONTINUE
C*** Find the maximum value
RS=1.E-3
NT5=NT-5
NX5=NX2-5
DO 114 I =1,NT5
DO 114 J= 1,NX5
S= DATA(I,J)
TP= PEAL(S)/RS
IF (ABS(TP).LT.1.) GO TO 114
RS= REAL(S)
114 CONTINUE
WRITE (6,516) RS
516 FORMAT(20X,'\#\#* MAXIMUM VALUE =',E12.5,' \#**'//)
DO 119 I =1,NT5
DO 113 J=1,NX5
S= DATA(I,J)
112 MM(J)= REAL(S)/RS*100
WRITE(6,515) (MM(KIM),KIM=1,27)
11s CONTINUE
515 FORMAT(10X,2713)
RETURN
END

```
```

1 RELEASE 2.0
FOURT
DATE = 771ミ9
21/11/39
SUBROUTINE FOURT(DATA,NN,NDIM,ISIGN,IFORM,WORK)
DIMENSION DATA(1),NN(1),IFACT(32),WORK(1)
TWOPI=6.283185307
IF(NDIM-1)920,1,1
| NTOT=2
DO 2 IOIM=1,NDIM
IF(NN(IDIM))920,92J,2
2 NTOT=NTOT*NN(IDIM)
C
C MAIN LOOP FOR EACH DIMENSION
C
NPl=2
DO 910 IDIM=1,NDIM
N=NN(IDIM)
NP2=NP1*N
IF(N-1)920,900,5
C
C FACTOR N
C
5. M=N
NTWO=NP1
IF=1
IDIV=2
10 IQUOT=M/IDIV
IREM=M-IDIV*IQUOT
IF(IQUOT-IDIV)50,11,11
|/ IF(IREM)20,12,20
12NTWO=NTWO+NTWO
M=IQUOT
GO TO 10
2CIDIV=3
30 IQUOT=M/IDIV
IQEM=M-IDIV*IQUOT
IF(IQUCT-IDIV)60,31,31
31IE(IREM)4C,32,40
32IFACT(IF)=IDIV
IF=IF+1
M=IQUOT
GO TO 3O
4|IDIV=IDIV+2
GO TO 30
50IF(IREM)60,51,60
5INTWO=NTWO+NTWO
GO TO 70
60 IFACT (IF)=M
C
C SEPARATE FOUR CASES--
C 1. COMPLEX TRANSFORM OR REAL TRANSFORM FOR THE 4TH, 5TH,ETC.

```

FFTTJOJ
FFTTOT7
FFTTOT8:
FFTTOTS:
FFTTO80
FFTT081:
FFTTO82:
FFTTO 83 :
FFTT084:
FFTTO85
FFTTO 86
FFTT087
FFTTO8Si
FFTTO89:
FFTiOgo:
FFTTO91
FFTTJ92
FFTT093:
FFTT094C
FFTTJ95:
FFTTO96
FFTTO97:
FFTTO98C
FFTTO99
FFTT100
FFTTIO1C
FFTTIO20
FFTT103:-
FFTT104C
FFTT105
FFTT106:
FFTT 1070
FFTT108:
FFTT109:
FFTT112.
FFTT111
FFTTII2
FFTTIl3?
FFTT114C
FFTT1150
FFTT1160
FFTT1170
FFTTII8:
FFTT1190
FFTT120:
FFTI:21:
FFTT122C
FFTT1236

1 RELEASE 2.0
FOURT
DATE \(=77139\)
21/11/39

NON2 \(=N P 1 *(N P 2 / N T W O)\)
ICASE=1
IF(IDIM-4) 71,90,90
IF(IFORM) 72,72,90
ICASE=2
IFIIDIM-1) 73,73,90
ICASE=3
IF(NTWC-NP 1)90,90,74
ICASE=4
NTWQ = NTWO/ 2
\(N=N / 2\)
NP2 \(=\) NP \(2 / 2\)
NTOT=NTOT/2
\(\mathrm{I}=3\)
DO \(80 \mathrm{~J}=2\),NTOT
DATA(J)=DATA(I)
\(I=I+2\)
I 1 RNG \(=N P 1\)
IF(ICASE-2)100,95,100
I1RNG \(=\) NPO* (1+NPREV/2)
SHUFFLE ON THE FACTORS OF TWC IN N. AS THE SHUFFLING
CAN BE DONE BY SIMPLE INTERCHANGE, NO WORKING ARRAY IS NEEDED
DIMENSIONS.
2. REAL TRANSFORM FOR THE 2ND OR 3RD DIMENSION. METHOD-tRANSFORM HALF THE DATA, SUPPLYING THE CTHER HALF BY CONJUGATE SYMMETRY.
3. REAL TRANSFORM FOR THE IST DIMENSION, N ODD. METHOD-transform half the data at each stage, supplying the other half by cinjuggate symmetry.
4. REAL TRANSFORM FOR THE IST DIMENSION, N EVEN. METHOD-TRANSFORM A COMPLEX ARRAY OF LENGTH N/2 WHOSE REAL PARTS ARE THE EVEN NUMBERED REAL VALUES AND WHOSE IMAGINARY PARTS are the odd numbered real values. separate and supply the second half by conjugate symmetry.

\section*{}
\(!1\)
1 RELEASE 2.0


W3I = W 2R 末WI +W2I *WR
420 DO 530 I \(1=1\), IlRNG, 2
DO \(530 \mathrm{~J} 3=11\), NON2, NP1
\(K M I N=J 3+I P A R \neq M\)
IF (MMAX-NON2) 430,430,440
\(K M I N=J 3\)
KDIF=IPAR*MMAX
450 KSTEP=4*KDIF
DO 520 KI=KMIN, NTOT, KSTEP
\(K 2=K 1+K D I F\)
\(K 3=K 2+K D I F\)
\(K 4=K 3+K D I F\)
IF (MMAX-NGN2) 460,460,480
UIR = DATA (K1) +DATA (K2)
UlI=DATA(K1+1)+DATA(K2+1)
\(U 2 R=D A T A(K 3)+D A T A(K 4)\)
\(U 2 I=D A T A(K 3+1)+D A T A(K 4+1)\)
\(U 3 R=D A T A(K 1)-D A T A(K 2)\)
U3I = DATA \((K 1+1)-D A T A(K 2+1)\)
IF(ISIGN)470,475,475
\(U 4 R=D A T A(K 3+1)-D A T A(K 4+1)\)
U4I = DATA (K4)-DATA(K3)
GO TO 510
U4R = DATA \((K 4+1)-D A T A(K 3+1)\)
U4I = DATA (K3)-DATA(K4)
GO TO 510
480 T2R=W2R*DATA(K2)-W2I*DATA(K2+1)
\(T 2 I=W 2 R * D A T A(K 2+1)+W 2 I * D A T A(K 2)\)
\(T 3 R=W R \neq D A T A(K 3)-W I * D A T A(K 3+1)\)
\(T 3 I=W R * D A T A(K 3+1)+W I * D A T A(K 3)\)
\(T 4 R=W 3 R * D A T A(K 4)-W 3 I * D A T A(K 4+1)\)
\(T 4 I=W 3 R * D A T A(K 4+1)+W 3 I * D A T A(K 4)\)
\(U 1 R=D A T A(K 1)+T 2 R\)
U1I = DATA(K1+1)+T2I
\(U 2 R=T 3 R+T 4 R\)
\(U 2 I=T 3 I+T 4 I\)
U3R = CATA \((K 1)-T 2 R\)
U3I = DATA (Kl+1)-T2I
IF(ISIGN)490,500,500
U4R=T3I-T4I
\(U 4 I=T 4 P-T 3 R\)
GO TO 510
\(500 \quad U 4 R=T 4 I-T 3 I\)
\(U 4 I=T 3 R-T 4 R\)
510 DATA(K1)=U1R+U2R
DATA(K1+1)=U1I+U2I
DATA \((K 2)=U 3 R+U 4 R\)
DATA(K2+1)=U3I+U4I

FFTT22)
FFTT221:
FFTT 222
FFTT223
FFTT 224 i
FFTT225:
FFTT 2260
FFTT227
FFTT 228.
FFTT 2291
FFTT230
FFTT 231
FFTT 2326
FFTT233
FFTT234i
FFTT 235 i
FFTT236:
FFTT2376
FFTT238:
FFTT2390.
FFTT 2400
FFTT241.
FFTT2420
FFTT2430
FFTT 244 C
FFTT2456
FFTT246:
FFTT 247 C
FFTT 248 C
FFTT249:
FFTT2500
FFTT 251 C
FFTT 252 :
FFTT \(253{ }^{\circ}\)
FFTT254i
FFTT255i
FFTT 256 C
FFTT257:
FFTT 258 C
FFTT259C
FFTT260:
FFTT \(2 \in 1 \mathrm{C}\)
FFTT262C
FFTT 2630
FFTT 264 C
FFTT 205
FFTT 266 C FFTT 267 C

1 RELEASE 2.0 FOURT \(0 \quad\) DATE \(=77139 \quad 21 / 11 / 39\)

DATA(K3) \(=U 1 R-U 2 R\)
DATA \((K 3+1)=U 1 I-U 2 I\)
DATA (K4) \(=\) U3R-U4R
DATA \((K 4+1)=U 3 I-U 4 I\)
KMIN \(=4 *(K M I N-J 3)+J 3\)
KDIF = KSTEP
IF(KDIF-NP2)450,530,530
continue
\(M=M M A X-M\)
IF(ISIGN)540,550,550
\(T E M P R=W R\)
\(W R=-W I\)
\(W I=-T E M P R\)
GO TO 560
TEMPR \(=W R\)
\(W R=W I\)
\(W I=T E M P R\)
IF (M-LMAX)565,565,410
TEMPR=WR
\(W R=W R\) * \(W S T P R-W I * W S T P I+W R\)
\(W I=W I * W S T P R+T E M P R * W S T P I+W I\)
\(I P A R=3-I P A R\)
MMAX \(=\) MMAX + MMAX
go TO 360

MAIN LOOP FOR FACTORS NOT EQUAL TO TWO. APPLY THE TWIDDLE FACTOR \(W=E X P(I S I G N * 2 * P I * S Q R T(-1) *(J 2-1) *(J 1-J 2) /(N P 2 * I F P 1))\), THEN PERFORM A FOURIER TRANSFORM OF LENGTH IFACT(IF), MAKING USE OF CONJUGATE SYMMETRIES.

IF(NTWC-NP \(21605,700,700\)
\(1 F P 1=N O N 2\)
I \(F=1\)
\(N P 1 H F=N P 1 / 2\)
\(I F P 2=I F P 1 / I F A C T(I F)\)
J1RNG = NP 2
IF(ICASE-3) \(612,611,612\)
\(J I R N G=(N P 2+I F P 1) / 2\)
J2STP =NP2/IFACT(IF)
J1RG2 \(=(J 2 S T P+I F P 2) / 2\)
\(J 2 M I N=1+I F P 2\)
IF(IFP1-NP2)615,640,640
DO 635 J2=J2MIN,IFP1,IFP2
THETA \(=-\) TWOPI*FLOAT \((J 2-1) /\) FLOAT (NP2)
IF(ISIGN)625,620,620
THETA = -THETA
SINTH=SIN(THETA/2.)
WSTPR \(=-2 . * S I N T H * S I N T H\)
FFTT268
FFTT 269.
FFTT270.
FFTT271
FFTT272
FFTT 273
FFTT274.
FFTT275i
FFTT276:
FFTT 277
FFTT278:
FFTT279
FFTT280:
FFTT 281
FFTT 282
FFTT 2830
FFTT 284 !
FFTT285:
FFTT \(286{ }^{\circ}\)
FFTT 287
FFTT288.
FFTT289:
FFTT 2901
FFTT2916
FFTT 292 :
FFTT203
FFTT 294 :
FFTT295:
FFTT296
FFTT297
FFTT 298 ©
FFTT299
FFTT300
FFTT301
FFTT302:
FFTTI303
FFTT 304.
FFTT305:
FFTT306i
FFTT307:
FFTT308i
FFTT309i
FFTT310.
FFTT311
FFTT312
FFTT313:
FFTT314
FFTT315


1 RELEASE 2.0.
FOURT
\(D A T E=77139\)
21/11/39
```

    WSTPI=SIN(THETA) FFTT3160
    WR=WSTPR+1.
    WI=WSTFI
    J1MIN=J2+IFPI
    DO 635 Jl=JIMIN,JIRNG,IFPI
    I 1MAX= 11+11RNG-2
    DO 630 II=J1,IIMMAX,2
    DO 630 13=11,NTOT,NP2
    J3MAX=13+IFP2-NP1
    DO 630 J3=I3,J3MAX,NP1
    TEMPR=DATA(J3)
    DATA(J3)=DATA(J3)*WR-DATA(J3+1)*WI
    \epsilon3C DATA(J3+1)=TEMPR*WI+DATA(J3+1)*WR
TEMPR=WR
WR=WR*WSTPR-WI \#WSTPI +WR
635 WI=TEMPR*WSTPI +WI*WSTPR +WI
640 THETA=-TWOPI/FLOAT(IFACT(IF))
IF(ISIGN)650,645,645
645 THETA =-THETA
650 SINTH=SIN(THETA/2.)
WSTPR=-2.*SINTH*SINTH
WSTPI=SIN(THETA)
KSTEP=2*N/IFACT(IF)
KRANG=KSTEP*(IFACT(IF)/2)+1
00698 Il=1,IlRNG,2
DO 698 I 3=11,NTOT,NP2
DO 690 KMIN=1,KRANG,KSTEP
JIMAX=I3+JIRNG-IFPI
DO 680 Jl=I3,J1MAX,IFPI
J3MAX=J1+IFP2-NP1
DO 680 J3=J1,J3MAX,NP1
J2MAX= J3+IFP1-IFP2
K=KMIN+(J3-J1+(J1-I3)/IFACT(IF))/NP1HF
IF(KMIN-1)655,655,665
SUMR =0.
SUMI =0.
DO 660 J2=J3,J2MAX,IFP2
SUMR = SUMR+DATA(J2)
SUMI = SUMI +DATA(J2+1)
WORK(K)=SUMR
WORK(K+1)=SUMI
GO TC E8O
665 KCONJ=K+2\#(N-KMIN+1)
J2= J2 MAX
SUMR=DATA(J2)
SUMI=DATA( J2+1)
OLDSR=0.
OLDSI=0.

```

FFTT3170
FFTT3170
FFTT3180
FFTT3190
FFTT3200
FFTT3210
FFTT3220
FFTT3230
FFTT 3240
FFTT3250
FFTT3260
FFTT3270
FFTT3280
FFTT3290
FFTT3300
FFTT3310
FFTT3320
FFTT3330
FFTT 3340
FFTT3350
FFTT 3360
FFTT3370
FFTT3380
FFTT3390
FFTT3400
FFTT3410
FFTT 3420
FFTT 3430
FFTT3440
FFTT3450
FFTT 3460
FFTT3470
FFTT3480
FFTT3490
FFTT 3500
FFTT 3510
FFTT3520
FFTT3530
FFTT3540
FFTT 3550
FFTT356C
FFTT 3570
FFTT3580
FFTT3590
FFTT 3600
FFTT: 0
FFTT3620
FFTT3630

1 RELEASE 2.0
```

K=1
I 2MAX = 13+NP2-NP1
DO 693 12=13,12MAX,NP1
DATA(12)=WORK(K)
DATA(I 2+1)=WORK(K+1)

```
```

    J2=J2-IFP2 FFTT364.
    TEMPR = SUMR
    TEMPI = SUMI
    SUMR = TWOWR*SUMR-OLDSR+DATA(J2)
    SUMI = TWOWR*SUMI-OLDSI +DATA(J2+1)
    OLDSR = TEMPR
    OLDSI=TEMPI
    J2=J2-IFP2
    IF(J2-J3)675,675,670
    TEMPR = WR*SUMR-OLDSR+DATA(J2)
    TEMPI = WI *SUMI
    WORK(K)=TEMPR-TEMPI
    WORK(KCONJ)=TEMPR+TEMPI
    TEMPR = WR*SUMI OLDSI +DATA(J2+1)
    TEMPI = WI #SUMR
    WORK (K+1) =TEMPR +TEMPI
    WORK(KCONJ+1)=TEMPR-TEMPI
    CONTINUE
IF(KMIN-1)685,685,686
WR=WSTPR+1.
WI=WSTPI
GO TO 690
TEMPR=WR
WR=WR*WSTPR-WI*WSTPI +WR
WI =TEMPR*WSTPI +WI *WSTPR+WI
TWOWR = WR +WR
IF(ICASE-3)692,691,692
IF(IFP1-NP2)695,692,692
K=K+2
GO TO 698
JUGATE SYMMETRIES AT EACH STAGE.
J3MAX=I3+IFP2-NP1
DO 697 J3=13,J3MAX,NP1
J2MAX = J3+NP2-J2STP
DO 697 J2=J3,J2MAX,J2STP
J1MAX=J2+J1RG2-IFP2
J1CNJ=J3+J2MAX+J2STP-J2
DO 697 JI=J2,J1MAX,IFP2
K=1+Jl-13
DATA(Jl)=WORK(K)

```

FFTT365
FFTT360
FFTT367
FFTT368.
FFTT369
FFTT370:
FFTT371:
FFTT372:
FFTT373:
FFTT374.
FFTT375
FFTT376:
FFTT377:
FFTTS78.
FFTTラ79
FFTT383
FFTT3811
FFTT382
FFTT383:
FFTT384i
FFTT3850
FFTT386:
FFTT387i
FFTT388:
FFTT389:
FFTT390
FFTT391:
FFTT392i
FFTT393.
FFTT394.
FFTT395:
FFTT 396 :
FFTT397
FFTT398:
FFTT399:
FFTT403:
FFTT401.
FFTT402:
FFTT403:
FFTT404:
FFTT4056
FFTT406r.
FFTT407:
FFTT408:
FFTT409!
FFTT410C FFTT411:

1 RELEASE 2.0
FOURT
DATE \(=77139\)
21/11/39


FFTT4120 FFTT4130 FFTT4140 FFTT4150 FFTT4160 FFTT4170 FFTT4180 FFTT4190 FFTT4200 FFTT4210 FFTT4220 FFTT4230 FFTT4240 FFTT4250 FFTT4260 FFTT4270 FFTT4280 FFTT4290 FFTT4300 FFTT4310 FFTT4320 FFTT4330 FFTT4340 FFTT4350 FFTT4360 FFTT4370 FFTT4380 FFTT4390 FFTT4400 FFTT4410 FFTT4420 FFTT4430 FFTT4440 FFTT4450 FFTT4460 FFTT4470 FFTT4480 FFTT4490 FFTT4500 FFTT4510 FFTT4520 FFTT4530 FFTT4540 FFTT4550 FFTT4550 FFTT4:0 FFTT4580 FFTT4590

1 RELEASE 2.0
FOURT
DATE \(=77139\)
21/11/39


FTT460C
FFTT461
FFTT4630
FFTT4640
FFTT465C
FFTT460c
FFTT \(4670^{\circ}\)
FFTT4680
FTT4690
FFT40
FFTT472C
FFTT473C
FFTT474C
FFTT475
FFTT476C
FFTT477C
FFTT4780
T 4
FT480
FFTT482C
FFTT4830
FFTT484C
FFTT485C
FFTT486:
FFTT4870
FTT488

FFTT493:
FFTT494:
FFTT4C5i
FFTT490ं
FFTT497(
T 498 C
FTT490
FTT50c
FFT
FFTT503C
FFT: 04 C
FFTTSOS:
FFTT507C
```

1 RELEASE 2.0 FOURT
DO 860 I $=I M I N, I M A X, N P O$

```DATA (I) =DATA(J)DATA \((I+1)=-\operatorname{DATA}(J+1)\)
        J=J-NPO
        NPl=NP2
910 NPREV=N
920 RETURN
    END
```

FETT5080 FFTT5090 FFTT 5100 FFTT5 110 FFTT5120 FFTT5 130 FFTT5140 FFTT5 150 FFTT5 160 FFTT5170 FFTT5 180 FFTT5190

* WAVE PROPAGATION IN COMPOSITE PLATE 必 W
GRAPHITE FIBER $(55 \%)-E P O X Y$ MATRIX COMPOSITE
LAYUP ANGLE $=15$ DEGREE
$\begin{array}{llll}C(1,1)=0.245600+08 & \text { PSI } & C(1,2)=0.400000+06 & \text { PSI } \\ C(2,2)=0.11700 D+07 & \text { PSI } & C(6,6)=0.355200+06 & \text { PSI }\end{array}$
TOTAL THICKNESS OF COMPOSITE PLATE: DELTA= 1.00000 CM
TOTAL THICKNESS OF COMPOSITE PLATE: DELTA =
DENSITY OF COMPOSITE ; RHO = 1.44000 GR/CM**3 PLATE IS MADE OF 8 IDENTICAL LAYERS
LAYER THICKNESS; $2 B=0.12500$ CM
$\begin{array}{lllllll}\text { TOTAL SPACE STEPS: } & \text { NX }=64 & \text { WITH } 8 & \text { STEPS FOR CONTACT RADIUS } \\ \text { TOTAL TIME STEPS } & \text { NT }=32 & \text { WITH } 24 & \text { STEPS FOR CONTACT TIME }\end{array}$
CONTACT RADIUS ; $A=0.200000-01 \mathrm{M}$
CONTACT TIME ; TAUO $=0.600000-05$ SECOND
TIME STEP ; DT $=0.250000-06$ SECOND

000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 $00000-1 \sim N m m m m m m m N N-10000000$








000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 $0000000-1 \mathrm{NmmmtvtmmmNNH-H000}$








000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000









000000000000000000000000000 000000000000000000000000000 00000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000 ールールールールー 000000000000000 HNNMJtル000 0








000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 00000000000000000000000000 H 0000000000000000000000000 HA 000000000000000000000000 нـн 00000000000000000000000 Нー H 00000000000000000000000 H尸t 0000000000000000000000 нーнー 00000000000000000000 H－NNNNH 0000000000000000000 NmLONRNO $000000000000000 \underset{1}{ }$


 $\rightarrow \rightarrow N N N N N \rightarrow \rightarrow O \rightarrow \rightarrow \rightarrow 0_{1}^{+1}$




000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 $00000000000000000000-\mathrm{NNmvin}$







000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000
 0000000000000 HNNMナルん000000に



































[^0]:    * These two motions are, of course, coupled through the boundary conditions.

[^1]:    * See section 5 for discussion about the large wave number limit.

[^2]:    * See section 5 for discussions about the large wave number limit.

[^3]:    * The lowest two cut-off frequencies are found from Eq. (II-11) and they are independent of the layer number in the plate under investigation.

[^4]:    * For (III-2) the Fourier transform is defined as

