217 research outputs found

    Cardiac myosin binding protein C, adrenergic stimulation and cardiac contractility

    Get PDF
    Myosin binding protein C remained a perplexing although integral component of the sarcomeric thick filament until the discovery that genetic defects in its corresponding gene is a frequent cause of hypertrophic cardiomyopathy. Basic science investigation subsequently revealed that it is one of the most potent regulators of cardiac contractility. Phosphorylation of its N-terminus upon adrenergic stimulation, causes increased order in myosin heads as well as increased ATPase activity, Fmax and Ca2+-sensitivity of contraction, while its dephosphorylation upon cholinergic stimulation or during low flow ischaemia leads to changes in the sarcomeric thick filament that diminish interaction between myosin heads and actin. This dynamic flux in phosphorylation upon adrenergic stimulation is not only crucial to normal cardiac function and structure, but also vital for protection against ischaemic injury. Genetically-driven deficiency or inadequacy in cMyBPC leads to severe cardiac dysfunction and structural changes, including cardiac hypertrophy and dilation, and particularly attenuates the adaptive increase in left ventricular contractility that follows on β-adrenergic stimulation or pressure overload, resulting in decreased systolic function, and reduced cardiac output

    Long-term follow-up of R403W MYH7 and R92W TNNT2 HCM families : mutations determine left ventricular dimensions but not wall thickness during disease progression

    Get PDF
    The original publication is available at http://www.cvja.co.za/CVJA holds the copyrightThe clinical profile and prognosis of patients with hypertrophic cardiomyopathy, a primary cardiac muscle disease caused mostly by mutations in sarcomeric protein-encoding genes, have been linked to particular disease-causing mutations in the past. However, such associations are often based on cross-sectional observations, as longitudinal studies of the progression of the disease in genotypically defined patients are sparse. Most importantly, the relative contribution of age, gender and genetic cause to disease profile and progression has not yet been reported, and the question remains whether one or more of these factors could mask the effect of the other(s). Methods: We previously described cross-sectional family studies of two hypertrophic cardiomyopathy (HCM)-causing mutations, R92WTNNT2 and R403WMYH7, both associated with minimal hypertrophy, but with widely different life expectancies. We re-investigated 22 and 26 R92WTNNT2 and R403WMYH7 mutation carriers in these and additional South African R92WTNNT2 families after a mean 11.08 ± 2.79 years, and compared the influence of the two mutations, in the context of age and gender, on disease progression. Results: We demonstrated a positive correlation between age and interventricular septal thickness for both mutations, with more than a third of all mutation carriers developing clinically recognised hypertrophy only after the age of 35 years. This period of hypertrophically silent HCM also coincided with the years in which most sudden cardiac deaths occurred, particularly in male R92WTNNT2 carriers. Statistical analyses indicated that the particular mutation was the strongest determinant of left ventricular remodelling; particularly, LVESD increased and EF reduction was noted in the majority of R403WMYH7 carriers, which may require clinical follow-up over the longer term. Conclusions: Statistical modelling of follow-up data suggests that an interplay between unidentified, possibly genderassociated factors, and the causal mutation are the determinants of eventual cardiac function and survival, but not of the extent of hypertrophy, and emphasises the need for long-term follow-up even in individuals with apparently mild disease.Publishers' Versio

    Genetic variation in angiotensin II type 2 receptor gene influences extent of left ventricular hypertrophy in hypertrophic cardiomyopathy independent of blood pressure

    Get PDF
    Introduction. Hypertrophic cardiomyopathy (HCM), an inherited primary cardiac disorder mostly caused by defective sarcomeric proteins, serves as a model to investigate left ventricular hypertrophy (LVH). HCM manifests extreme variability in the degree and distribution of LVH, even in patients with the same causal mutation. Genes coding for renin—angiotensin—aldosterone system components have been studied as hypertrophy modifiers in HCM, with emphasis on the angiotensin (Ang) II type 1 receptor (AT1R). However, Ang II binding to Ang II type 2 receptors (AT2R) also has hypertrophy-modulating effects. Methods. We investigated the effect of the functional +1675 G/A polymorphism (rs1403543) and additional single nucleotide polymorphisms in the 3' untranslated region of the AT2R gene ( AGTR2) on a heritable composite hypertrophy score in an HCM family cohort in which HCM founder mutations segregate. Results. We find significant association between rs1403543 and hypertrophy, with each A allele decreasing the average wall thickness by ~0.5 mm, independent of the effects of the primary HCM causal mutation, blood pressure and other hypertrophy covariates ( p = 0.020). Conclusion. This study therefore confirms a hypertrophy-modulating effect for AT2R also in HCM and implies that +1675 G/A could potentially be used in a panel of markers that profile a genetic predisposition to LVH in HCM

    Myomegalin is a novel A-kinase anchoring protein involved in the phosphorylation of cardiac myosin binding protein C

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiac contractility is regulated by dynamic phosphorylation of sarcomeric proteins by kinases such as cAMP-activated protein kinase A (PKA). Efficient phosphorylation requires that PKA be anchored close to its targets by A-kinase anchoring proteins (AKAPs). Cardiac Myosin Binding Protein-C (cMyBPC) and cardiac troponin I (cTNI) are hypertrophic cardiomyopathy (HCM)-causing sarcomeric proteins which regulate contractility in response to PKA phosphorylation.</p> <p>Results</p> <p>During a yeast 2-hybrid (Y2H) library screen using a trisphosphorylation mimic of the C1-C2 region of cMyBPC, we identified isoform 4 of myomegalin (MMGL) as an interactor of this N-terminal cMyBPC region. As MMGL has previously been shown to interact with phosphodiesterase 4D, we speculated that it may be a PKA-anchoring protein (AKAP).</p> <p>To investigate this possibility, we assessed the ability of MMGL isoform 4 to interact with PKA regulatory subunits R1A and R2A using Y2H-based direct protein-protein interaction assays. Additionally, to further elucidate the function of MMGL, we used it as bait to screen a cardiac cDNA library. Other PKA targets, viz. CARP, COMMD4, ENO1, ENO3 and cTNI were identified as putative interactors, with cTNI being the most frequent interactor.</p> <p>We further assessed and confirmed these interactions by fluorescent 3D-co-localization in differentiated H9C2 cells as well as by <it>in vivo </it>co-immunoprecipitation. We also showed that quantitatively more interaction occurs between MMGL and cTNI under β-adrenergic stress. Moreover, siRNA-mediated knockdown of MMGL leads to reduction of cMyBPC levels under conditions of adrenergic stress, indicating that MMGL-assisted phosphorylation is requisite for protection of cMyBPC against proteolytic cleavage.</p> <p>Conclusions</p> <p>This study ascribes a novel function to MMGL isoform 4: it meets all criteria for classification as an AKAP, and we show that is involved in the phosphorylation of cMyBPC as well as cTNI, hence MMGL is an important regulator of cardiac contractility. This has further implications for understanding the patho-aetiology of HCM-causing mutations in the genes encoding cMyBPC and cTNI, and raises the question of whether MMGL might itself be considered a candidate HCM-causing or modifying factor.</p

    Genetic variation in angiotensin-converting enzyme 2 gene is associated with extent of left ventricular hypertrophy in hypertrophic cardiomyopathy

    Get PDF
    Hypertrophic cardiomyopathy, a common, inherited cardiac muscle disease, is primarily caused by mutations in sarcomeric protein-encoding genes and is characterized by overgrowth of ventricular muscle that is highly variable in extent and location. This variability has been partially attributed to locus and allelic heterogeneity of the disease-causing gene, but other factors, including unknown genetic factors, also modulate the extent of hypertrophy that develops in response to the defective sarcomeric functioning. Components of the renin-angiotensin-aldosterone system are plausible candidate hypertrophy modifiers because of their role in controlling blood pressure and biological effects on cardiomyocyte hypertrophy

    Thermo-responsive non-woven scaffolds for "smart" 3D cell culture

    Get PDF
    The thermo-responsive polymer poly(N-isopropylacrylamide) has received widespread attention for its in vitro application in the non-invasive, non-destructive release of adherent cells on two dimensional surfaces. In this study, 3D non-woven scaffolds fabricated from poly(propylene) (PP), poly(ethylene terephthalate) (PET) and nylon that had been grafted with PNIPAAm were tested for their ability to support the proliferation and subsequent thermal release of HC04 and HepG2 hepatocytes. Hepatocyte viability and proliferation was estimated using the Alamar Blue assay and Hoechst 33258 total DNA quantification. The assays revealed that the pure and grafted non-woven scaffolds maintained the hepatocytes within the matrix and promoted 3D proliferation comparable to that of the commercially available AlgimatrixTM alginate scaffold. Albumin production and selected cytochrome P450 genes expression was found to be superior in cells growing on pure and grafted non-woven PP scaffolds as compared to cells grown as a 2D monolayer. Two scaffolds, namely, PP-g- PNIPAAm-A and PP-g-PNIPAAm-B were identified as having far superior thermal release capabilities; releasing the majority of the cells from the matrices within 2 h. This is the first report for the development of 3D non-woven, thermo-responsive scaffolds able to release cells from the matrix without the use of any enzymatic assistance or scaffold degradation.The Council for Scientific and Industrial Researchhttp://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-0290hb2016Biochemistr

    Axial distribution of myosin binding protein-C is unaffected by mutations in human cardiac and skeletal muscle

    Get PDF
    Myosin binding protein-C (MyBP-C), a major thick filament associated sarcomeric protein, plays an important functional and structural role in regulating sarcomere assembly and crossbridge formation. Missing or aberrant MyBP-C proteins (both cardiac and skeletal) have been shown to cause both cardiac and skeletal myopathies, thereby emphasising its importance for the normal functioning of the sarcomere. Mutations in cardiac MyBP-C are a major cause of hypertrophic cardiomyopathy (HCM), while mutations in skeletal MyBP-C have been implicated in a disease of skeletal muscle—distal arthrogryposis type 1 (DA-1). Here we report the first detailed electron microscopy studies on human cardiac and skeletal tissues carrying MyBP-C gene mutations, using samples obtained from HCM and DA-1 patients. We have used established image averaging methods to identify and study the axial distribution of MyBP-C on the thick filament by averaging profile plots of the A-band of the sarcomere from electron micrographs of human cardiac and skeletal myopathy specimens. Due to the difficulty of obtaining normal human tissue, we compared the distribution to the A-band structure in normal frog skeletal, rat cardiac muscle and in cardiac muscle of MyBP-C-deficient mice. Very similar overall profile averages were obtained from the C-zones in cardiac HCM samples and skeletal DA-1 samples with MyBP-C gene mutations, suggesting that mutations in MyBP-C do not alter its mean axial distribution along the thick filament

    Outcomes of outpatient ureteral stenting without fluoroscopy at Groote Schuur Hospital, Cape Town, South Africa

    Get PDF
    Background. Ureteral stenting is generally a theatre-based procedure that requires a multidisciplinary team and on-table imaging. Limited hospital bed numbers and theatre time in our centre in Cape Town, South Africa, have led us to explore an alternative approach.Objectives. To see whether outpatient insertion of ureteric stents under local anaesthesia without fluoroscopy was a possible and acceptable alternative to theatre-based ureteral stenting.Methods. Ureteral stenting (double-J stents and ureteric catheters) was performed with flexible cystoscopy under local anaesthesia and chemoprophylaxis, but without fluoroscopic guidance, in an outpatient setting. Every patient had an abdominal radiograph and an ultrasound scan of the kidney after the procedure to confirm stent position.Results. Three hundred and sixteen procedures (276 double-J stents and 40 ureteric catheters) were performed in 161 men and 155 women. The overall success rate for the procedures was 85.4%, independent of gender (p=0.87), age (p=0.13), type of device inserted (p=0.81) or unilateral/bilateral nature of the procedure (p=1.0). Procedures with a successful outcome were performed in a significantly (p&lt;0.0001) shorter median time (10 minutes (interquartile range (IQR) 5 - 15)) than failed procedures (20 minutes (IQR 10 - 30)). Patients with a pain score of &gt;5 experienced a significantly (p=0.02) greater proportion of failure (27.3%) than patients with a pain score of ≤5 (12.5%). Difficulties were encountered in 23.7% of procedures, with a significantly higher proportion being registered in failed interventions compared with successful ones (82.6% v. 13.7%; p&lt;0.0001).Conclusions. The procedure was easily mastered and technically simple, and represents savings in cost, time and human resources in our setting.
    corecore