301 research outputs found

    Study of X-ray emission from the old open cluster, M67

    Get PDF
    We present an X-ray analysis of a 4 Gyr old open cluster, M67, using archival XMM-Newton data. The aim of this study was to find new X-ray members of M67, and to use the updated member list for studying X-ray variability, and derive the X-ray luminosity functions (XLFs) of different stellar types and compare them with other star clusters of similar age. We report the detection of X-ray emission from 25 members of M67, with membership based primarily on their proper motion, of which one X-ray source is a new member. Supplementing this study with previous ROSAT and Chandra studies of M67, and using the most recent proper motion study by Vereshchagin et al., we have compiled a revised list of X-ray emitting members of M67 consisting of 43 stars. Sixteen of these are known RS CVn type binaries having orbital periods << 10 days, and near-circular orbits, 5 are contact binaries with orbital periods << 6 hours, 5 are yellow and blue stragglers, 2 are Algol-type binaries, and one source is a cataclysmic variable. Fourteen members do not have any orbital information and cannot be classified. Fourteen of the X-ray sources detected do not have any optical counterpart down to a magnitude of V22V\simeq22, and their membership is uncertain. Finally, we report the X-ray luminosity functions of RS CVn type and other types of stars in M67 and compare them with other open clusters of intermediate-to-old age.Comment: 13 pages, 8 figures, 5 tables. Accepted for publication in MNRA

    A GMRT 150 MHz search for variables and transients in Stripe 82

    Get PDF
    We have carried out a dedicated transient survey of 300 deg2 of the SDSS Stripe 82 region using the Giant Metrewave Radio Telescope (GMRT) at 150 MHz. Our multi-epoch observations, together with the TGSS survey, allow us to probe variability and transient activity on four different time-scales, beginning with 4 h and up to 4 yr. Data calibration, RFI flagging, source finding, and transient search were carried out in a semi-automated pipeline incorporating the SPAM recipe. This has enabled us to produce superior-quality images and carry out reliable transient search over the entire survey region in under 48 h post-observation. Among the few thousand unique point sources found in our 5σ single-epoch catalogues (flux density thresholds of about 24, 20, 16, and 18 mJy on the respective time-scales), we find <0.08 per cent, 0.01 per cent, <0.06 per cent, and 0.05 per cent to be variable (beyond a significance of 4σ and fractional variability of 30 per cent) on time-scales of 4 h, 1 d, 1 month, and 4 yr, respectively. This is substantially lower than that in the GHz sky, where ∼1 per cent of the persistent point sources are found to be variable. Although our survey was designed to probe a superior part of the transient phase space, our transient search did not yield any significant candidates. The transient (preferentially extragalactic) rate at 150 MHz is therefore <0.005 on time-scales of 1 month and 4 yr, and <0.002 on time-scales of 1 d and 4 h, beyond 7σ detection threshold. We put these results in perspective with the previous studies and give recommendations for future low-frequency transient surveys

    On associating Fast Radio Bursts with afterglows

    Get PDF
    A radio source that faded over six days, with a redshift of z0.5z\approx0.5 host, has been identified by Keane et al. (2016) as the transient afterglow to a fast radio burst (FRB 150418). We report follow-up radio and optical observations of the afterglow candidate and find a source that is consistent with an active galactic nucleus. If the afterglow candidate is nonetheless a prototypical FRB afterglow, existing slow-transient surveys limit the fraction of FRBs that produce afterglows to 0.25 for afterglows with fractional variation, m=2S1S2/(S1+S2)0.7m=2|S_1-S_2|/(S_1+S_2)\geq0.7, and 0.07 for m1m\geq1, at 95% confidence. In anticipation of a barrage of bursts expected from future FRB surveys, we provide a simple framework for statistical association of FRBs with afterglows. Our framework properly accounts for statistical uncertainties, and ensures consistency with limits set by slow-transient surveys.Comment: Accepted version (ApJL

    Time-resolved optical/near-IR polarimetry of V404 Cyg during its 2015 outburst

    Get PDF
    We present optical and near-IR linear polarimetry of V404 Cyg during its 2015 outburst and in quiescence. We obtained time resolved r'-band polarimetry when the source was in outburst, near-IR polarimetry when the source was near quiescence and multiple wave-band optical polarimetry later in quiescence. The optical to near-IR linear polarization spectrum can be described by interstellar dust and an intrinsic variable component. The intrinsic optical polarization, detected during the rise of one of the brightest flares of the outburst, is variable, peaking at 4.5 per cent and decaying to 3.5 per cent. We present several arguments that favour a synchrotron jet origin to this variable polarization, with the optical emission originating close to the jet base. The polarization flare occurs during the initial rise of a major radio flare event that peaks later, and is consistent with a classically evolving synchrotron flare from an ejection event. We conclude that the optical polarization flare represents a jet launching event; the birth of a major ejection. For this event we measure a rather stable polarization position angle of -9 degrees E of N, implying that the magnetic field near the base of the jet is approximately perpendicular to the jet axis. This may be due to the compression of magnetic field lines in shocks in the accelerated plasma, resulting in a partially ordered transverse field that have now been seen during the 2015 outburst. We also find that this ejection occurred at a similar stage in the repetitive cycles of flares.Comment: 9 pages, 5 figures, accepted for publication by MNRA

    Pulsar candidates towards Fermi unassociated sources

    Get PDF
    We report on a search for steep spectrum radio sources within the 95 per cent confidence error ellipses of the Fermi unassociated sources from the Large Area Telescope (LAT). Using existing catalogues and the newly released Giant Metrewave Radio Telescope all-sky survey at 150 MHz, we identify compact radio sources that are bright at MHz frequencies but faint or absent at GHz frequencies. Such steep spectrum radio sources are rare and constitute a sample of pulsar candidates, selected independently of period, dispersion measure, interstellar scattering and orbital parameters. We find point-like, steep spectrum candidates towards 11 Fermi sources. Based on the gamma-ray/radio positional coincidence, the rarity of such radio sources, and the properties of the 3FGL sources themselves, we argue that many of these sources could be pulsars. They may have been missed by previous radio periodicity searches due to interstellar propagation effects or because they lie in an unusually tight binary. If this hypothesis is correct, then renewed gamma-ray and radio periodicity searches at the positions of the steep spectrum radio sources may reveal pulsations

    The Karl G. Jansky Very Large Array Sky Survey (VLASS). Science case, survey design and initial results

    Get PDF
    The Very Large Array Sky Survey (VLASS) is a synoptic, all-sky radio sky survey with a unique combination of high angular resolution (≈2.”5), sensitivity (a 1σ goal of 70 μJy/beam in the coadded data), full linear Stokes polarimetry, time domain coverage, and wide bandwidth (2–4 GHz). The first observations began in 2017 September, and observing for the survey will finish in 2024. VLASS will use approximately 5500 hr of time on the Karl G. Jansky Very Large Array (VLA) to cover the whole sky visible to the VLA (decl. > −40°), a total of 33 885 deg². The data will be taken in three epochs to allow the discovery of variable and transient radio sources. The survey is designed to engage radio astronomy experts, multi-wavelength astronomers, and citizen scientists alike. By utilizing an "on the fly" interferometry mode, the observing overheads are much reduced compared to a conventional pointed survey. In this paper, we present the science case and observational strategy for the survey, and also results from early survey observations

    High-energy gamma-ray observations of the accreting black hole V404 Cygni during its June 2015 outburst

    Get PDF
    We report on Fermi/Large Area Telescope observations of the accreting black hole low-mass X-ray binary V404 Cygni during its outburst in June-July 2015. Detailed analyses reveal a possible excess of γ\gamma-ray emission on 26 June 2015, with a very soft spectrum above 100100 MeV, at a position consistent with the direction of V404 Cyg (within the 95%95\% confidence region and a chance probability of 4×1044 \times 10^{-4}). This emission cannot be associated with any previously-known Fermi source. Its temporal coincidence with the brightest radio and hard X-ray flare in the lightcurve of V404 Cyg, at the end of the main active phase of its outburst, strengthens the association with V404 Cyg. If the γ\gamma-ray emission is associated with V404 Cyg, the simultaneous detection of 511511\,keV annihilation emission by INTEGRAL requires that the high-energy γ\gamma rays originate away from the corona, possibly in a Blandford-Znajek jet. The data give support to models involving a magnetically-arrested disk where a bright γ\gamma-ray jet can re-form after the occurrence of a major transient ejection seen in the radio.Comment: 5 pages, 3 figures, accepted for publication in MNRA

    A mildly relativistic wide-angle outflow in the neutron-star merger event GW170817

    Get PDF
    GW170817 was the first gravitational wave detection of a binary neutron-star merger. It was accompanied by radiation across the electromagnetic spectrum and localized to the galaxy NGC 4993 at a distance of 40 megaparsecs. It has been proposed that the observed γ-ray, X-ray and radio emission is due to an ultra-relativistic jet launched during the merger, directed away from our line of sight. The presence of such a jet is predicted from models that posit neutron-star mergers as the central engines that drive short hard γ-ray bursts. Here we report that the radio light curve of GW170817 has no direct signature of an off-axis jet afterglow. Although we cannot rule out the existence of a jet pointing elsewhere, the observed γ-rays could not have originated from such a jet. Instead, the radio data require a mildly relativistic wide-angle outflow moving towards us. This outflow could be the high-velocity tail of the neutron-rich material dynamically ejected during the merger or a cocoon of material that breaks out when a jet transfers its energy to the dynamical ejecta. The cocoon model explains the radio light curve of GW170817 as well as the γ-rays and X-rays (possibly also ultraviolet and optical emission), and is therefore the model most consistent with the observational data. Cocoons may be a ubiquitous phenomenon produced in neutron-star mergers, giving rise to a heretofore unidentified population of radio, ultraviolet, X-ray and γ-ray transients in the local Universe
    corecore