237 research outputs found

    Magnonic analog of the Edelstein effect in antiferromagnetic insulators

    Get PDF
    We investigate the nonequilibrium spin polarization due to a temperature gradient in antiferromagnetic insulators, which is the magnonic analog of the inverse spin-galvanic effect of electrons. We derive a linear-response theory of a temperature-gradient-induced spin polarization for collinear and noncollinear antiferromagnets, which comprises both extrinsic and intrinsic contributions. We apply our theory to several noncentrosymmetric antiferromagnetic insulators, i.e., to a one-dimensional antiferromagnetic spin chain, a single layer of kagome noncollinear antiferromagnet,e.g.,KFe3(OH)6(SO4)2,and a noncollinear breathing pyrochlore antiferromagnet, e.g., LiGaCr4O8. The shapes of our numerically evaluated response tensors agree with those implied by the magnetic symmetry. Assuming a realistic temperature gradient of 10 K/mm, we find two-dimensional spin densities of up to ∼10^6 hbar/cm^2 and three-dimensional bulk spin densities of up to ∼10^14 hbar/cm^3, encouraging an experimental detection

    Spin Seebeck and Spin Nernst Effects of Magnons in Noncollinear Antiferromagnetic Insulators

    Full text link
    Our joint theoretical and computer experimental study of heat-to-spin conversion reveals that noncollinear antiferromagnetic insulators are promising materials for generating magnon spin currents upon application of a temperature gradient: they exhibit spin Seebeck and spin Nernst effects. Using Kubo theory and spin dynamics simulations, we explicitly evaluate these effects in a single kagome sheet of potassium iron jarosite, KFe3_3(OH)6_6(SO4_4)2_2, and predict a spin Seebeck conversion factor of 0.2μV/K0.2 \mu\mathrm{V}/\mathrm{K} at a temperature of 20K20 \mathrm{K}.Comment: 6 pages, 3 figure

    Compensated Quantum and Topological Hall Effects of Electrons in Polyatomic Stripe Lattices

    Get PDF
    The quantum Hall effect is generally understood for free electron gases, in which topologically protected edge states between Landau levels (LLs) form conducting channels at the edge of the sample. In periodic crystals, the LLs are imprinted with lattice properties; plateaus in the transverse Hall conductivity are not equidistant in energy anymore. Herein, crystals with a polyatomic basis are considered. For a stripe arrangement of different atoms, the band structure resorts nontrivially and exhibits strong oscillations that form a salient pattern with very small bandgaps. The Hall conductivity strongly decreases for energies within these bands, and only sharp peaks remain for energies in the gap. These effects are traced back to open orbits in the initial band structure; the corresponding LLs are formed from states with positive and negative effective mass. The partial cancellation of transverse charge conductivity also holds for different polyatomic stripe lattices and even when the magnetic field is replaced by a topologically nontrivial spin texture. The topological Hall effect is suppressed in the presence of magnetic skyrmions. The discussion is complemented by calculations of Hofstadter butterflies and orbital magnetization.Comment: 12 pages, 15 figure

    Long-distance coupling of spin qubits via topological magnons

    Get PDF
    We consider two distant spin qubits in quantum dots, both coupled to a two-dimensional topological ferromagnet hosting chiral magnon edge states at the boundary. The chiral magnon is used to mediate entanglement between the spin qubits, realizing a fundamental building block of scalable quantum computing architectures: a long-distance two-qubit gate. Previous proposals for long-distance coupling with magnons involved off-resonant coupling, where the detuning of the spin-qubit frequency from the magnonic band edge provides protection against spontaneous relaxation. The topological magnon mode, on the other hand, lies in between two magnonic bands far away from any bulk magnon resonances, facilitating strong and highly tuneable coupling between the two spin qubits. Even though the coupling between the qubit and the chiral magnon is resonant for a wide range of qubit splittings, we find that the magnon-induced qubit relaxation is vastly suppressed if the coupling between the qubit and the ferromagnet is antiferromagnetic. A fast and high-fidelity long-distance coupling protocol is presented capable of achieving spin-qubit entanglement over micrometer distances with 1MHz gate speed and up to 99.9% fidelities. The resulting spin-qubit entanglement may be used as a probe for the long-sought detection of topological edge magnons

    Magnetoelectric Cavity Magnonics in Skyrmion Crystals

    Get PDF
    We present a theory of magnetoelectric magnon-photon coupling in cavities hosting noncentrosymmetric magnets. Analogously to nonreciprocal phenomena in multiferroics, the magnetoelectric coupling is time-reversal and inversion asymmetric. This asymmetry establishes a means for exceptional tunability of magnon-photon coupling, which can be switched on and off by reversing the magnetization direction. Taking the multiferroic skyrmion-host Cu2_2OSeO3_3 with ultralow magnetic damping as an example, we reveal the electrical activity of skyrmion eigenmodes and propose it for magnon-photon splitting of ``magnetically dark'' elliptic modes. Furthermore, we predict a cavity-induced magnon-magnon coupling between magnetoelectrically active skyrmion excitations. We discuss applications in quantum information processing by proposing protocols for all-electrical magnon-mediated photon quantum gates, and a photon-mediated SPLIT operation of magnons. Our study highlights magnetoelectric cavity magnonics as a novel platform for realizing quantum-hybrid systems and the coherent transduction between photons and magnons in topological magnetic textures.Comment: 19 pages, 17 figures. Accepted version for PRX Quantu

    Magnonic analog of the Edelstein effect in antiferromagnetic insulators

    Get PDF
    We investigate the nonequilibrium spin polarization due to a temperature gradient in antiferromagnetic insulators, which is the magnonic analog of the inverse spin-galvanic effect of electrons. We derive a linear-response theory of a temperature-gradient-induced spin polarization for collinear and noncollinear antiferromagnets, which comprises both extrinsic and intrinsic contributions. We apply our theory to several noncentrosymmetric antiferromagnetic insulators, i.e., to a one-dimensional antiferromagnetic spin chain, a single layer of kagome noncollinear antiferromagnet,e.g.,KFe3(OH)6(SO4)2,and a noncollinear breathing pyrochlore antiferromagnet, e.g., LiGaCr4O8. The shapes of our numerically evaluated response tensors agree with those implied by the magnetic symmetry. Assuming a realistic temperature gradient of 10 K/mm, we find two-dimensional spin densities of up to ∼10^6 hbar/cm^2 and three-dimensional bulk spin densities of up to ∼10^14 hbar/cm^3, encouraging an experimental detection
    corecore