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Magnonic analog of the Edelstein effect in antiferromagnetic insulators
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(Received 3 October 2019; revised manuscript received 11 December 2019; published 31 January 2020)

We investigate the nonequilibrium spin polarization due to a temperature gradient in antiferromagnetic insu-
lators, which is the magnonic analog of the inverse spin-galvanic effect of electrons. We derive a linear-response
theory of a temperature-gradient-induced spin polarization for collinear and noncollinear antiferromagnets,
which comprises both extrinsic and intrinsic contributions. We apply our theory to several noncentrosymmetric
antiferromagnetic insulators, i.e., to a one-dimensional antiferromagnetic spin chain, a single layer of kagome
noncollinear antiferromagnet, e.g., KFe3(OH)6(SO4)2, and a noncollinear breathing pyrochlore antiferromagnet,
e.g., LiGaCr4O8. The shapes of our numerically evaluated response tensors agree with those implied by the
magnetic symmetry. Assuming a realistic temperature gradient of 10 K/mm, we find two-dimensional spin
densities of up to ∼106 h̄/cm2 and three-dimensional bulk spin densities of up to ∼1014 h̄/cm3, encouraging
an experimental detection.

DOI: 10.1103/PhysRevB.101.024427

I. INTRODUCTION

Generation of nonequilibrium spin imbalance is increas-
ingly important for the current spintronics research [1], espe-
cially in the context of nonequilibrium torques [2]. In metal-
lic and semiconductor materials, spin-orbit coupling (SOC)
facilitates the interplay between the orbital and spin degrees
of freedom, which allows feasible electric manipulation of
spins, e.g., for technological applications. One consequence of
such coupling is the inverse spin-galvanic effect [3–5] which
attracted considerable interest in recent years [6–17]. The
nonequilibrium spin polarization contains an extrinsic part
dependent on the transport relaxation time and an intrinsic
part independent of the relaxation time [2], and it can lead to
spin-orbit torques. Both fieldlike and dampinglike spin-orbit
torques can arise due to the nonequilibrium spin polarization
at interfaces between magnetic and nonmagnetic materials
[18–24].

In ferromagnetic and antiferromagnetic insulators,
magnons—the quantum quasiparticles carrying energy
and spin—can mediate various transport phenomena. The
Dzyaloshinskii-Moriya interaction (DMI) [25,26] in such
systems can lead to magnon spin-momentum locking [27],
magnon-mediated magnetization torques [28–30], and
magnonic thermal Hall [31–42] and spin Nernst effects
[29,43–52]. In Ref. [46], two of us speculated about a
possibility of magnon-mediated spin polarization in insulating
antiferromagnets lacking inversion symmetry.

In this work, we study the magnonic analog of the Edel-
stein effect by considering antiferromagnetic insulators [53].
The spin nonconservation in such systems can be caused by
noncollinear spin order or spin-orbit interactions (e.g., re-
sulting in Dzyaloshinskii–Moriya interactions or anisotropic
exchange). We consider a linear response to the temperature
gradient replicated by a pseudo-gravitational potential [54] in

the magnon Hamiltonian. The final result for the magnonic
spin polarization is separated into the extrinsic and intrinsic
contributions [53]. We apply our theory to several models
and discuss relevant material candidates. In one dimension,
an antiferromagnetic spin chain with anisotropic nearest ex-
change and Rashba-like DMI serves as a toy model exhibiting
both intrinsic and extrinsic contributions to the magnonic
analog of the Edelstein effect. In two and three dimensions, we
concentrate on realistic noncollinear antiferromagnets on the
kagome and breathing pyrochlore lattices. From the magnetic
point group, we establish the response tensor shapes which
agree with our numerical results.

The paper is organized as follows. In Sec. II, we discuss
the Holstein-Primakoff transformation of magnons in non-
collinear antiferromagnets, introduce the spin-density opera-
tor for magnons, and discuss the diagonalization procedure.
In Sec. III, we derive the expression for the magnonic spin
polarization as a linear response to the temperature gradient.
In Sec. IV, we discuss the symmetry constraints on the
response tensor. In Sec. V, we apply our theory to an antifer-
romagnetic spin chain and to noncollinear antiferromagnets
on the kagome and breathing pyrochlore lattices. We also
estimate the nonequilibrium spin density using real material
parameters. In Sec. VI, we perform atomistic spin dynamics
simulations and compare with our results from the previous
section. Finally, we conclude our discussion in Sec. VII with
a summary and an outlook. Appendixes contain more detailed
information about our derivations.

II. HAMILTONIAN AND EIGENSTATES

We consider a general Hamiltonian of the form

H =
∑
i, j

[
Jαβ

i j Sα
i Sβ

j + Di j · (Si × S j )
] +

∑
i

Hi, (1)
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where i, j label different lattice sites and α, β stand for
different spin vector components, i.e., x, y, z. Moreover, Jαβ

i j
is the symmetric exchange energy between α, β spin com-
ponents on two sites i and j, while antisymmetric exchange
is described by the DMI vector Di j between spins on sites
i and j. Effects of the on-site anisotropy and magnetic field
may also be included in our analysis via the last term, Hi =
Ki(Si · ẑi )2 + (Si · B).

We proceed with the Holstein-Primakoff transformation
[55] in the limit of large spin and map spin operators onto
bosonic creation and annihilation operators, a†

i and ai:

Si =
√

2S − a†
i ai ai

x̂i − iŷi

2
+ a†

i

√
2S − a†

i ai
x̂i + iŷi

2

+ (S − a†
i ai )ẑi. (2)

Here, the unit vectors x̂i, ŷi, and ẑi form a local coordinate
frame at position i with ẑi pointing along the ground-state
spin direction of site i determined by a particular magnetic
ordering. Keeping the leading-order terms of bosonic opera-
tors, we obtain the bilinear Hamiltonian written in magnon
particle-hole space as

H = 1

2

∫
dr�†(r)H�(r), (3)

where �(r) = (a1(r), . . . , aN (r), a†
1(r), . . . , a†

N (r))T , H is
the real-space single-particle Hamiltonian describing nonin-
teracting magnons, and r describes the coordinate of a mag-
netic unit cell containing N atoms.

In momentum space, Hamiltonian (3) reads

H = 1

2

∑
k

�
†
kHk�k, (4)

where �k = (a1,k, . . . , aN,k, a†
1,−k, . . . , a†

N,−k )T . From the

standard bosonic commutation relation [ai,k, a†
j,k] = δi j , it can

be shown that

[�i,k, �
†
j,k] = (σ3)i j, (5)

where here and henceforth σi (i = 0, 1, 2, 3) stands for the
Pauli matrices acting in particle-hole space (with σ0 being
the identity matrix). Hamiltonian (4) can be diagonalized
by a matrix Tk, which introduces Bogoliubov quasiparticles:
�k = T −1

k �k with �k = (γ1,k, . . . , γN,k, γ
†
1,−k, . . . , γ

†
N,−k )T .

In terms of the eigenbasis, Eq. (4) reads

H = 1

2

∑
k

�
†
kEk�k =

∑
k

N∑
n=1

εn,k

(
γ

†
n,kγn,k + 1

2

)
, (6)

where Ek = Diag(ε1,k, . . . , εN,k, ε1,−k, . . . , εN,−k ) is the
eigenenergy matrix containing the eigenvalues εn,k. By
plugging �k = Tk�k into Eq. (5) and recalling that
the normal-mode quasiparticles are bosons as well, i.e.,
[�i,k, �

†
j,k] = (σ3)i j , we conclude that Tk is paraunitary:

T †
k σ3Tk = Tkσ3T †

k = σ3. (7)

To appreciate the differences to a unitary transformation,
let us write the diagonalization in a more suggestive matrix
form,

T †
k HkTk = T †

k σ3(σ3Hk )Tk = Ek, (8)

where σ3Hk can be regarded as a pseudo-Hermitian Hamilto-
nian. Although it violates hermiticity, it can still be diagonal-
ized by different left and right eigenstates with corresponding
real eigenvalues. T †

k σ3 and Tk are alignments of left and
right eigenstates, respectively: the lth entry of the nth left
(right) eigenstate reads 〈uL

n,k|l = (T †
k σ3)nl [|uR

n,k〉l = (Tk )ln].
Paraunitarity is then expressed as 〈uL

m,k|uR
n,k〉 = (σ3)mn and

Eq. (8) is equivalent to 〈uL
m,k|σ3Hk|uR

n,k〉 = (Ek )nnδmn. Thus,
the pseudo-Hermitian Hamiltonian matrix in terms of its
eigenbasis reads σ3Hk = ∑

n(Ek )nn|uR
n,k〉〈uL

n,k|, from which
follows a pair of eigenequations [56],

σ3Hk
∣∣uR

n,k

〉 = ε̄n,k
∣∣uR

n,k

〉
, (9)

〈
uL

n,k

∣∣σ3Hk = 〈
uL

n,k

∣∣ε̄n,k, (10)

where ε̄n,k = (σ3Ek )nn. From here on, we will only refer to the
right eigenstates as |uR

n,k〉 = |un,k〉, and their left partners can
be always obtained from 〈uL

n,k| = 〈un,k|σ3.
Finally, note that the magnon basis possesses particle-

hole symmetry (PHS) �
†
k = (σ1�−k )T so that the Hamilto-

nian obeys σ1Hkσ1 = H∗
−k, which leads to ε̄n+N,k = −ε̄n,−k

and |un,k〉 = eiφnσ1|un+N,−k〉∗, where φn is a redundant phase
factor.

Since we are interested in a nonequilibrium spin-density
response to an external force, we must denote the spin-density
operator in terms of the aforementioned magnonic variables.
We introduce the μ = x, y, z component of the magnonic spin-
density operator as [57]

�μ = 1

V

∑
k

�
†
k�̂μ�k, (11)

where

�̂μ = − 1
2 Diag

(
zμ

1 , . . . , zμ
N , zμ

1 , . . . , zμ
N

)
, (12)

and the unit vectors zμ
i corresponding to directions of mag-

netic moments have been introduced in Eq. (2). We note that
PHS implies 〈un,k|�̂μ|un,k〉 = 〈un+N,−k|�̂μ|un+N,−k〉.

III. LINEAR-RESPONSE THEORY

In this section, we perform linear-response calculations of
the nonequilibrium spin density with respect to a temperature
gradient ∇νT , i.e.,

〈�μ〉 = χμν∇νT = (
χ ex

μν + χ in
μν

)∇νT, (13)

where we separated the response tensor χμν into extrinsic,
χ ex

μν , and intrinsic, χ in
μν , parts.

We introduce a perturbation corresponding to a pseudo-
gravitational potential φ(r):

H ′ = 1

4

∫
dr�†(r)(Hφ(r) + φ(r)H)�(r), (14)

where φ(r) = −T (r)/T . Up to the linear order, the spatial
gradients of this potential replicate the presence of the temper-
ature gradient in the system. In addition, the pseudogravita-
tional potential also amends the spin-density operator [54,58].
This can be seen by considering a response to magnetic field
in the presence of perturbation (14). The total macroscopic
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spin-density operator becomes

�μ = 1

V

∫
dr�†(r)

(
�̂μ + φ

2
�̂μ + �̂μ

φ

2

)
�(r). (15)

Thus, the nonequilibrium spin density contains two parts:

〈�μ〉tot = 〈�μ〉neq + 〈δ�μ〉eq = (Kμν + Dμν )∇νφ, (16)

where the term proportional to Kμν corresponds to the unper-
turbed spin-density operator and it can be calculated within
the Kubo linear-response formalism. The dipole contribution
Dμν is evaluated with respect to the equilibrium state as it
originates from the correction to the spin density in Eq. (15)
containing the temperature gradient.

We first calculate Kμν within the Kubo linear-response
formalism [29,43] in which the spin accumulation is given by

〈�μ〉neq = lim
ω→0

1

iω
[�μν (ω) − �μν (0)]∇νφ, (17)

where

�μν (iωm) = −
∫ 1/kBT

0
dτeiωmτ

〈
Tτ�μ(τ )Jq

ν (0)
〉
, (18)

and ωm is the bosonic Matsubara frequency. The ν compo-
nent of the macroscopic heat current, Jq

ν = 1
V

∫
dr jq

ν (r), is
derived from the heat current density jq = 1

4�†(r)(Hσ3v +
vσ3H)�(r), with velocity v = i[H, r]. The heat current den-
sity can be inferred from the continuity equation, i.e., ρ̇E +
∇ · jq = 0, with ρE being the energy density of the system.
In Appendix A, we provide the detailed calculation of the
response tensor Kμν divided into intraband and interband
parts: Kμν = K intra

μν + K inter
μν , whose explicit forms read

K intra
μν = 1

V

∑
k

2N∑
n=1

1

�n
(Jν,k )nn(�μ,k )nn∂εnB[ε̄k,n], (19)

K inter
μν = 4

V

∑
k

∑
m �=n

Im[(σ3�μ,k )nm(σ3Jν,k )mn]nB[ε̄k,n]

(ε̄k,n − ε̄k,m)2
, (20)

where nB(x) = 1/(ex/kBT − 1) is the Bose-Einstein distribu-
tion function, and we used notations �μ,k = T †

k �̂μTk, J k =
T †

k Jq
kTk, and Jq

k = 1
4 (Hkσ3vk + vkσ3Hk ) with vk = ∂Hk

∂k . As
can be seen from Eq. (19), the phenomenological spectrum
broadening, given by �n, is crucial for the intraband com-
ponent, whereas it does not enter the intrinsic contribution.
Plugging Jν,k = 1

4 (Ekσ3ṽν,k + ṽν,kσ3Ek ) with ṽν,k = T †
k vνTk

into Eq. (19) (see details in Appendix A), we obtain the
intraband (extrinsic) response tensor:

χ ex
μν = 1

V T

N∑
k,n=1

1

�n
(�μ,k )nnvnk,νεn,k

[
−∂nB(εn,k )

∂ε

]
, (21)

where vnk,ν = (ṽν,k )nn = ∂εn,k

∂kv
. This result can be also ob-

tained from the Boltzmann transport theory with the re-
laxation time τn = 1/(2�n). The interband contribution in
Eq. (20) can be reorganized as

K inter
μν = 1

V

2N∑
k,n=1

[ − (
��

n,k

)
μν

ε̄n,k − (
m�

n,k

)
μν

]
nB(ε̄n,k ), (22)

where
(
��

n,k

)
μν

=
∑

m( �=n)

2Im[(σ3�μ,k )nm(σ3ṽν,k )mn]

(ε̄n,k − ε̄m,k )2
,

(
m�

n,k

)
μν

=
∑

m( �=n)

−Im[(σ3�μ,k )nm(σ3ṽν,k )mn]

(ε̄n,k − ε̄m,k )
. (23)

Here (��
n,k )μν satisfies a relation (��

n,k )μν = (��
n+N,−k )μν and

a sum rule
∑2N

n=1(��
n,k )μν = 0.

The expression for K inter
μν is not yet the final result for the

intrinsic response. We now show that it can be conveniently
combined with the dipole contribution

Dμν =
〈

1

V

∫
dr�†(r)�̂μrν�(r)

〉
eq

, (24)

where we used that [�̂ν, rν] = 0. To calculate this term,
we explicitly introduce a perturbation corresponding to an
external magnetic field B(r) into Hamiltonian H [58–60]:

ĤB = −[B(r) · �̂ + �̂ · B(r)], (25)

where B(r) varies slowly in space, i.e., on a length scale much
larger than the lattice constant. The dipole moment can then
be found from a thermodynamic relation [58],

Dμν = − lim
B→0

∂�

∂ (∂rν
Bμ)

, (26)

where � is the thermodynamic grand potential of the system
and the limit of vanishing magnetic field has to be taken.
Using the Maxwell relation(

∂Dμν

∂T

)
B,∂rB

=
[

∂S

∂ (∂rν
Bμ)

]
T,B

, (27)

we introduce an auxiliary quantity D̃μν = − ∂K
∂ (∂rν Bμ ) , where

K = � + T S and

D̃μν = ∂ (βDμν )

∂β
. (28)

From the auxiliary quantity D̃μν we can calculate Dμν . The
former is calculated using the perturbation theory applied to

K (r) = 1

2

2N∑
k,n=1

(σ3)nng(ε̄n,k )〈ψn,k(r)|K̂|ψn,k(r)〉, (29)

where |ψn,k(r)〉 = eik·r|un,k〉. For a perturbation B(r) =
B/q sin(q · r)êμ, with q = qêν , we obtain

D̃μν = lim
q→0

−2

V B

∫
dxδK (r) cos(q · r), (30)

where only the leading-order correction δK (r) due to the mag-
netic field is considered. It is obtained from the expansion:

δK (r) = 1

2

∑
nk

δg(ε̄nk )(σ3)nn〈ψnk|K̂0|ψnk〉

−g(ε̄nk )(σ3)nn〈ψnk|ĤB|ψnk〉
+ g(ε̄nk )(σ3)nn(〈δψnk|K̂0|ψnk〉 + 〈ψnk|K̂0|δψnk〉),

(31)
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with

|δψnk〉 =
∑
m �=n

iB

2q
(σ3)mm

[
ei(k+q)·r|um,k+q〉 〈um,k+q|(�μ,k + �μ,k+q)|un,k〉

ε̄nk − ε̄m,k+q
− (q → −q)

]
, (32)

where �μ,k = e−ik·r�̂μeik·r = �̂μ. After substituting Eq. (31)
into Eq. (30) we find (details in Appendix A)

D̃μν = 1

V

∑
nk

g(ε̄n,k )ε̄nk
(
��

n,k

)
μν

+ [g(ε̄n,k ) + g′(ε̄n,k )

×ε̄n,k]
(
m�

n,k

)
μν

, (33)

where for quasiequilibrium magnons with nonzero chemical
potential we should have ε̄n,k → ε̄n,k − μ. Utilizing this ex-
pression as well as Eq. (28), we obtain the dipole contribution:

Dμν = 1

V

∑
nk

[(
��

n,k

)
μν

∫ ε̄nk

0
dηg(η) + (

m�
n,k

)
μν

g(ε̄n,k )

]
.

(34)

This result has to be combined with the Kubo part in Eq. (22)
to give us the total intrinsic contribution:

χ in
μν = 2kB

V

N∑
n=1

∑
k

(
��

n,k

)
μν

c1[nB(εn,k )], (35)

where we used the notation c1(x) = (1 + x) ln(1 + x) −
x ln(x). Note that we have expressed Eq. (35) in particle space
by utilizing the properties of (��

nk )μν [46]; see details in
Appendix A.

Equations (21) and (35) are the main results of this section.
In Sec. V, we use these formulas to make numerical predic-
tions of the nonequilibrium spin density for several relevant
models, including material candidates.

Before proceeding to subsequent discussions, some useful
remarks about the response theory developed above are due.
The validity of magnon representation is well established at
low temperatures. Higher-order magnon-magnon interaction
corrections to the theory start with O(1/S) terms. These
corrections include both effects from thermally activated
processes and spontaneous decay [61,62]. The former are
frozen in the low-temperature regime. The latter contribute to
spectrum broadening and renormalization, both of which are
further suppressed by the weak magnon-magnon coupling fac-
tor and restriction of energy and momentum conservation. The
magnon-phonon scattering effects lead to the phenomenolog-
ical broadening factor �n in our theory [63]. Higher-order
corrections, such as vertex corrections, could in principle be
important in some cases but their consideration goes beyond
the scope of this paper. In a special case, when the magnon-
phonon coupling is strong enough, it may become necessary
to explore the magnon-phonon hybrid system [64,65] where
our theory still applies by treating quasiparticles as a mixture
of magnon and phonon.

IV. SYMMETRY CONSTRAINTS

In this section, we discuss constraints on the magnon
response tensor χμν posed by the symmetries. To generate

the nonequilibrium spin density with magnons one needs a
system in which spin is not conserved locally or globally,
at least for one direction of the spin polarization. This is
often the case in noncollinear antiferromagnets or in systems
with Dzyaloshinskii-Moriya interactions. For example, for
inversion symmetric systems spin density is globally con-
served [46]. To see this, note that inversion symmetry implies
Hk = H−k, which leads to Tk = T−k, Ek = E−k and vn,k =
−vn,−k. Substituting these relations into Eq. (21) results in
χ ex

μν = −χ ex
μν = 0. Furthermore, inversion symmetry also en-

forces the relation (��
n,k )μν = −(��

n,−k )μν , which results in
χ in

μν = −χ in
μν = 0, that is, in a vanishing intrinsic response.

Below, in Sec. V, we show several examples of collinear and
noncollinear systems in which spin can be generated, because
inversion symmetry is broken.

In general, the response tensor will be constrained by sym-
metry operations of a specific material under consideration.
The constraining relations can be readily found within the
framework of linear-response theory [66,67]. Assuming that
a system respects a symmetry operation represented by g,
we find for an arbitrary operator Â that 〈g(ψnk )|Â|g(ψmk )〉 =
〈ψng(k)|g−1Âg|ψmg(k)〉 when the operation is unitary, and
〈g(ψnk )|Â|g(ψmk )〉 = 〈ψng(k)|g−1Âg|ψmg(k)〉∗, when the oper-
ation is antiunitary. Operators transform as g−1v̂ig = ∑

j Rv
i j v̂ j

and g−1�̂ig = ∑
j Rs

i j�̂ j , where Rv/s is the corresponding
matrix representation of g with respect to the Cartesian com-
ponents v̂ j or �̂ j . We find Rv = ±R and Rs = ± det(R)R
where ± refers to unitary (+) or antiunitary (−) symmetries,
respectively. Under the above premises, the following symme-
try requirements on elements of the response tensor arise:

χ ex
μν = det(R)RμiRν jχ

ex
i j ,

(36)
χ in

μν = ± det(R)RμiRν jχ
in
i j ,

where ± corresponds to unitary and antiunitary symmetry
operations, respectively. Later on, we show that these two
relations result in different shapes of the response tensors,
which is useful for distinguishing extrinsic and intrinsic con-
tributions. Notice that tensors χ ex

μν and χ in
μν transform differ-

ently under antiunitary operations which is a consequence of
a complex factor in the expression for (��

n,k )μν corresponding
to taking the imaginary part in Eq. (23). Given the transfor-
mation properties of velocity and spin, one finds that χ ex

μν is
even and χ in

μν is odd under the time-reversal transformation.
Consequently, a reversal of the magnetic ordering causes χ in

μν

to flip sign while χ ex
μν is invariant under such transformation:

χ in
μν[{Si}] = −χ in

μν[{−Si}], (37a)

χ ex
μν[{Si}] = χ ex

μν[{−Si}]. (37b)

Thus, it is possible to disentangle extrinsic from intrinsic
contributions by measuring the nonequilibrium spin density
for two antiferromagnetically ordered states related by the
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time-reversal transformation. Such approach has been used in
studies of the spin Hall effect [68].

A short note on the similarity to the electronic Edelstein
effect is in order. In principle, the latter also consists of a
time-reversal even extrinsic and time-reversal odd intrinsic
contribution [67,69,70]. However, since the Edelstein effect is,
for historic reasons, mainly studied in nonmagnetic materials,
the extrinsic contribution has been analyzed in more detail.
On the other hand, since the very notion of a magnon is tied
to magnetism, both contributions are, in general, expected to
be of equal importance.

V. MODELS

In this section, we apply our theory to specific models.
To obtain some intuition, we first focus on a toy model
of collinear antiferromagnetic spin chain with anisotropic
exchange and inversion asymmetry resulting in Rashba-type
DMI. We then focus on more realistic noncollinear kagome
and breathing pyrochlore antiferromagnets, for which we use
material parameters established in the literature. To satisfy
the requirement of inversion asymmetry, we assume that
the kagome antiferromagnet can have interfacial inversion
asymmetry, e.g., due to thin-film geometry in contact with
another material. The breathing pyrochlore antiferromagnet
has bulk inversion asymmetry. For details of the Holstein-
Primakoff transformations and explicit expressions of the
magnon Hamiltonians, we refer the reader to Appendix B.

A. Antiferromagnetic spin chain

As a simple model, we first consider the antiferromagnetic
spin chain shown in Fig. 1(a). Similar to Eq. (1), the Hamilto-
nian

H =
∑

i

∑
ν=±1

[
J
(
γ Sx

1,iS
x
2,i+ν + Sy

1,iS
y
2,i+ν + λSz

1,iS
z
2,i+ν

)

+Dν
12ez · (S1,i × S2,i+ν )

]
(38)

contains the anisotropic symmetric exchange interaction,
which is given in terms of an energy J and dimensionless
factors γ and λ, and the antisymmetric exchange interaction
described by DMI vectors along z direction. We choose γ � 1
and λ � 1, such that the collinear state with Néel vector along
z direction is the classical magnetic ground state. For γ �= 1,
the anisotropy causes the magnons to experience the effect of
“squeezing” [71]. Note that λ has to be larger than a critical
value to avoid the spins from canting due to DMI. The DMI
strength is set to D+

12 = D1 and D−
12 = D2, where ν = ± refers

to the direction of the bond [+ for going from the left to the
right in Fig. 1(a)].

It is convenient to reparametrize the DMI as D0 = (D1 +
D2)/2J and δD = (D1 − D2)/2J . The staggered contribution
to DMI is necessary for the model to exhibit both intrinsic
as well as extrinsic effects. To see this, observe that only in
the absence of the inversion symmetry we can have D0 �= 0.
However, when δD = 0, the system still holds a T ∗ Mx

symmetry, where T is time reversal and Mx is the mirror sym-
metry with respect to the y-z plane passing through the atoms.
Applying the corresponding Cartesian representation matrix
R = Diag{−1, 1, 1} of T ∗ Mx to Eq. (36), the intrinsic part

FIG. 1. (a) Spin order and DMI vectors in the antiferromagnet
spin chain model. (b), (c) Magnon dispersion and magnon spin
expectation value in the one-dimensional (1D) Brillouin zone. We
used D0/J = 0.2, δD/J = −0.1. (d), (e) Extrinsic and intrinsic
response coefficients. In (d), τ = JS/(2�n) is the dimensionless
magnon lifetime (h̄ is set to 1). Parameters read λ = 1.05, γ = 0.95,
J = 2 meV, S = 3/2, and D0/J = 0.2.

χ in
zx is rendered zero. Therefore, we set δD �= 0 to ensure the

appearance of intrinsic contributions.
In Fig. 1(b), we show the magnon band structure. The

degeneracy of spin-up and -down modes is lifted by the DMI
and γ �= 1. On top of that, since γ �= 1, spin is not conserved
and we observe the magnon spin-momentum locking [27] as
shown in Fig. 1(c), which is in agreement with Ref. [71]. This
is in contrast to the usual case of uniaxial collinear antiferro-
magnets (AFMs) that feature two eigenmodes with opposite
spin quanta ±h̄. Figures 1(d) and 1(e) show the extrinsic and
intrinsic response coefficient, respectively. For the calculation
of the extrinsic response, we regarded the broadening as a
constant, �n = h̄/2τ , where τ is the magnon lifetime [72]. In
Figs. 1(d) and 1(e), the extrinsic spin accumulation dominates.

To obtain an intuitive understanding of the extrinsic con-
tributions, we recall the usual electronic Edelstein effect sce-
nario in a Rashba system. Upon shifting the spin-momentum
locked Fermi circles in reciprocal space due to application
of an electric field, electronic states with a particular spin
polarization are more occupied than those with opposite spin
polarization (e.g., see Fig. 13 of Ref. [73]). Consequently, this
redistribution leads to a nonzero macroscopic spin density in
nonequilibrium. A similar explanation can be given for the
magnonic case. First, we consider the band 2 [cf. Fig. 1(b)].
According to Fig. 1(c), magnons in band 2 have a positive
(negative) spin for negative (positive) momentum k, which
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(c)(b)(a)

FIG. 2. Noncollinear antiferromagnetic PVC order on the kagome lattice. (a), (b) Ground-state spin configuration from above and front
view. Lattice vectors are denoted by 	a and 	b. (c) Left: intrinsic DMI vectors; right: Rashba DMI vectors. Arrows along the bonds indicate
ordering of sites in DMI terms. (d) Magnon dispersion with DR/J = 0.06. (e), (f) Extrinsic and intrinsic response tensor elements χ ex

yx and χ in
xx ,

respectively. τ is the dimensionless magnon lifetime and a denotes the lattice constant. We used the material parameters of KFe3(OH)6(SO4)2:
J1 = 3.18 meV, J2 = 0.11 meV, |Dp|/J1 = 0.062, Dz/J1 = −0.062, and S = 5/2.

corresponds to magnon spin-momentum locking discussed in
Ref. [27]. Upon application of the temperature gradient (or
the pseudogravitational potential) we redistribute magnons
from k to −k (or vice versa, depending on the direction of
the gradient), causing an excess of magnons with positive
spin. Although there is some cancellation between the lower
and upper band, the different thermal occupation ensures that
there is a nonzero resulting net spin density in nonequilibrium.
There is no such simple picture for the intrinsic contributions,
which arise due to interband mixing [2].

B. Kagome antiferromagnet

In several real materials, spin nonconservation naturally
emerges due to noncollinear antiferromagnetism. For exam-
ple, noncollinear antiferromagnets (NAFMs) exist in lay-
ered quasi-two-dimensional kagome and triangular magnetic
structures, and in three-dimensional pyrochlore magnetic
structures. We first take the kagome antiferromagnet in the
so-called q = 0 phase with positive vector chirality (PVC)
[62,74,75], which is depicted in Fig. 2(a), as an example.

The spin Hamiltonian under consideration is

H =
∑
〈i j〉

J1Si · S j + Di j · (Si × S j ) +
∑
〈〈i j〉〉

J2Si · S j, (39)

where the three terms describe the nearest-neighbor exchange
with J1 > 0, DMI, and the second-nearest neighbor exchange
with J2 > 0. The DMI vector Di j is composed of intrinsic
DMI and extrinsic Rashba DMI, i.e., Di j = Din + DR. The
intrinsic DMI Din = Dp + Dz,i j ẑ has out-of-plane contribu-
tions Dz,i j as well as in-plane contributions Dp = Dpn̂i j along
n̂i j . The DMI vectors are arranged as shown in the left part
of Fig. 2(c). Accounting for the antiferromagnetic exchange
interactions and only for the intrinsic DMI, the classical
ground state is the 120◦-ordered antiferromagnetic state [cf.
Fig. 2(a)] with a small out-of-plane canting, with an angle
given by η = 1

2 tan−1( −2Dp√
3(J1+J2 )−Dz

) [cf. Fig. 2(b)]. Thus, there
is a weak ferromagnetic moment in the z direction and the
texture is not fully compensated. Here, we are concentrating
on nonequilibrium spin densities in the x and y directions,
along which the texture is compensated.

Although nonzero Dp breaks the mirror symmetry of the
kagome lattice, the system is still inversion symmetric. Thus,
we need the Rashba-like DMI described by DR that we
envision to arise in an inversion-symmetry breaking environ-
ment, as caused, e.g., by putting a single kagome layer on
a substrate. The vector DR lies in the kagome plane and has
directions similar to Dp, but with the crucial difference that its
directions are always pointing in the same direction relative
to the bond [compare the left and right parts of Fig. 2(c)].
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TABLE I. The shape of spin-polarization response tensors en-
forced by magnetic point-group symmetry for selected noncollinear
antiferromagnets.

Structure Extrinsic Intrinsic

Kagome (PVC,SVC)

(
0 −χ ex

yx

χ ex
yx 0

) (
χ in

xx 0
0 χ in

xx

)

Kagome (NVC)

(
0 χ ex

xy

χ ex
yx 0

) (
χ in

xx 0
0 χ in

yy

)

Triangle

(
0 −χ ex

yx

χ ex
yx 0

) (
χ in

xx 0
0 χ in

xx

)

Pyrochlore (AIAO)

⎛
⎝0 0 0

0 0 0
0 0 0

⎞
⎠

⎛
⎝χ in

xx 0 0
0 χ in

xx 0
0 0 χ in

xx

⎞
⎠

We also note that a large Rashba-DMI can twist the system
into a spiral state. We confirmed numerically that this does
not happen for |DR|/J < 0.06 using computational package
SpinW [76].

The kagome NAFM described above exhibits two symme-
tries: (i) the mirror reflection with respect to the y-z plane
plus time reversal, g1 = MxT , and (ii) the threefold rotation
about the z axis, g2 = C3z. According to Eq. (36), these two
symmetries fix the extrinsic and intrinsic response tensors to
the forms in Table I (kagome PVC), where only the in-plane
spin polarizations are allowed.

Based on what we have discussed so far, we propose
potassium iron jarosite KFe3(OH)6(SO4)2 as a candidate
material. Concentrating on a single kagome layer of this
material and assuming that the mirror symmetry is broken
due to a proper environment, the magnon dispersion is given
in Fig. 2(d). We used the parameters J1 = 3.18 meV, J2 =
0.11 meV, |Dp|/J1 = 0.062, Dz/J1 = −0.062, and S = 5/2
[36,77]. The spin-density response is captured by virtue of
Eqs. (21) and (35). The results for the extrinsic χ ex

yx and
intrinsic contributions, χ in

xx, are shown in Figs. 2(e) and 2(f),
respectively. The effect becomes stronger as we increase
Rashba DMI. The contributions χ ex

xx and χ in
yx are zero in

agreement with tensor shapes in Table I.
Approximating the magnon band broadening �n ∼ h̄/2τ

as a constant, with a magnon lifetime τ ∼ 10−10 s, and
using a lattice constant a = 10−9 m, a Rashba DMI DR =
0.06J , a temperature gradient ∂xT = 10 K/mm [78], and a
temperature T = 0.5JS [which corresponds to a temperature
≈46 K for KFe3(OH)6(SO4)2], we obtain the extrinsic part
of the temperature-gradient-induced spin density 〈�y〉ex 

5 × 106h̄/cm2, and the intrinsic part 〈�x〉in 
 2 × 105h̄/cm2.
With larger temperature gradients, the extrinsic contribution
can be made comparable to spin densities generated by the
electronic Edelstein effect [14], which are of the order of
108–1010 h̄/cm2.

C. Breathing pyrochlore antiferromagnets

The 3D pyrochlore lattices, which consist of corner-
sharing tetrahedra, are well known for exhibiting noncollinear
spin structures. Here, to break bulk inversion symmetry,
we concentrate on the so-called “breathing” pyrochlore

FIG. 3. (a) Breathing pyrochlore lattice with indicated lattice
vectors 	ai (i = 1, 2, 3) and nearest-neighbor exchange in up-pointing
(blue, J ′) and down-pointing (yellow, J) tetrahedra. (b) Spin order in
the all-in–all-out configuration. (c) Magnon band structure. (d) The
intrinsic response χ in

xx , with a denoting the lattice constant. Parame-
ters read J ≈ 50 K (4.3 meV), J ′/J = 0.6, D/J = −0.2, S = 3/2 to
mimic the material LiGaCr4O8.

antiferromagnets that possess different exchange interaction
in up-pointing (u) and down-pointing (d) tetrahedra [see
Fig. 3(a)]. The minimal Heisenberg model is [79]

H = J
∑

〈i, j〉∈u

Si · S j + J ′ ∑
〈i, j〉∈d

Si · S j + D
∑

i

(Si · ẑi )
2. (40)

The first two terms describe the antiferromagnetic exchange
interactions in up-pointing and down-pointing tetrahedra, re-
spectively. The last term comprises easy-axis anisotropy (D <

0), with ẑi being a unit vector pointing either towards or
away from the tetrahedon’s center of gravity. This model
can be energetically optimized to different spin configurations
depending on the values of J ′/J , and D/J [79,80], but here we
only concentrate on the all-in–all-out (AIAO) order depicted
in Fig. 3(b), in which all spins of a single tetrahedron are either
pointing inward [yellow tetrahedron in Fig. 3(b)] or outward
(blue tetrahedra).

The AIAO order respects the magnetic point group T̄d =
Span{C3,C2, T ∗ σd , T ∗ S4} [81,82]. Here, we give the rep-
resentative generators of these symmetries: C3 is the threefold
rotation with respect to the [1,1,1] axis; C2 is the twofold
rotation about the [1,0,0] axis; T ∗ σd is time reversal fol-
lowed by the reflection about the (1̄, 1, 0) plane; and T ∗ S4

is time reversal followed by the combination of the fourfold
rotation about [1,0,0] and the reflection about (1,0,0). We
find that this symmetry constraint eliminates any extrinsic
response and enforces the intrinsic response tensor to be
proportional to a unit matrix; see Table I. In Fig. 3(c), we
plot the dispersion of the four magnon bands for the AIAO
phase with J ≈ 50 K (4.3 meV) and J ′/J = 0.6, which is the
breathing ratio of LiGaCr4O8 [83]. We used D/J = −0.2 to
stabilize the AIAO order. In Fig. 3(d), we show the intrinsic
response χ in

xx = χ in
yy = χ in

zz , which are the only nonzero tensor

024427-7



LI, MOOK, RAELIARIJAONA, AND KOVALEV PHYSICAL REVIEW B 101, 024427 (2020)

elements, in agreement with the symmetry analysis. If we
assume ∂xT = 10 K/mm, T = 0.12JS, and a ∼ 10−9 m, the
intrinsic spin accumulation is estimated to be 〈�x〉in 
 5 ×
1014h̄/cm3. We can compare this result with the electronic
Edelstein effect by converting its 2D spin density to a bulk
density: 〈�〉2D

electron/a ∼ 1015–1017h̄/cm3. Thus, the intrinsic
contribution in breathing pyrochlores is comparable with the
electronic Edelstein effect. We believe that this result is
detectable in experiment either by transport measurements
similar to those used for detection of the inverse spin Hall
effect, by magneto-optical Kerr microscopy, or by magnetic
sensing based on the nitrogen-vacancy (NV ) centers [84].

VI. COMPUTER EXPERIMENTS

To better understand the nonequilibrium spin density
brought about by the magnonic counterpart to the Edelstein ef-
fect, we use atomistic spin dynamics simulations. We describe
spin dynamics using the stochastic Landau-Lifshitz-Gilbert
(sLLG) equation

Ṡi = − γ

μ(1 + α2)
[Si × Bi + αSi × (Si × Bi )], (41)

comprising the damped precession of Si about its lo-
cal field Bi = bi − ∂H/∂Si. The stochastic field bi(t ) =√

2αkBT μ/(γ�t ) G(t ) simulates thermal noise [85,86]. G(t )
is a three-dimensional Gaussian random number distribution
with zero mean. α, γ , and μ = 2μB

√
S(S + 1) are the di-

mensionless Gilbert damping, the gyromagnetic ratio, and
the modulus of the magnetic moment at each lattice site,
respectively. The numerical integration of Eq. (41) is done by
the Heun method [86] with time steps �t � 1 fs.

We consider the antiferromagnetic spin chain introduced in
Sec. V A and study this model in a nonequilibrium situation.
As was shown in Sec. V A, the extrinsic contribution to
the nonequilibrium spin density dominates over the intrinsic
contribution for the spin chain model. Thus, we focus on
the extrinsic contributions and set D1 = D2 = D such that
δD = 0, rendering intrinsic contributions zero by symmetry.

We simulate a spin chain of N = 480 spins with spin
Hamiltonian as in Eq. (38). First, to characterize the chain in
terms of magnon variables, i.e., in terms of (i) the magnon dis-
persion and (ii) the magnon spin, we calculate the dynamical
structure factor

F (k, ω) = 1√
2πN

∑
i, j

eik(xi−x j )
∫ ∞

−∞
eiωt 〈S+

i (t )S−
j (0)〉 dt, (42)

i.e., the time and space Fourier transform of the spin-spin
time-correlation function. xi denotes the x coordinate of the
ith spin and S±

i = Sx
i ± iSy

i .
The numerically determined magnon spectra for the spin

chain are shown in Figs. 4(a), 4(c) 4(e), and 4(g); they
agree with those obtained analytically in the previous section
[shown as black lines in Figs. 4(b), 4(d) 4(f), and 4(h)]. In
Fig. 4(a), we depict the dispersion of the isotropic antifer-
romagnetic spin chain (λ = 1, D = 0, γ = 1) with the two
degenerate linear Goldstone modes. This degeneracy is lifted
in the presence of spin-nonconserving anisotropies λ > 1 and
γ < 1 [cf. Fig. 4(c)]. In Fig. 4(e), we show the Rashba-like
spin-split dispersion in the presence of nonzero DMI and
λ > 1, and in Fig. 4(g) the dispersion in the presence of both

0
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FIG. 4. Magnon spectra of the antiferromagnetic spin chain as
obtained from numerical simulations for selected parameters. Top
row: dynamical structure factor; bottom row: the spin of magnons
or Stokes parameter ratio σ (k, ω) (red: negative; gray: zero; blue:
positive). Black solid lines show the analytically obtained magnon
dispersion (within linear spin-wave theory). Parameters read J =
1 meV, and (a), (b) λ = 1, D = 0, γ = 1, (c), (d) λ = 1.05, D =
0, γ = 0.9, (e), (f) λ = 1.05, D = 0.3 meV, γ = 1, and (g), (h)
λ = 1.05, D = 0.3 meV, γ = 0.9. A small simulation temperature
T = 0.01 K and Gilbert damping α = 0.001 were chosen to reduce
lifetime broadening.

anisotropies as well as DMI, for which the band degeneracy
at k = 0 is lifted [as compared to Fig. 4(e)].

The magnon spin is extracted by computing the
Stokes parameters I (k, ω) = |Sx|2 + |Sy|2 and V (k, ω) =
−2Im(SxSy,∗) [87], where S = S(k, ω) is the space and time
Fourier transform of the spin configuration {Si(t )}. The quan-
tity σ (k, ω) = V (k, ω)/I (k, ω) measures the ratio of circular
to total polarization intensity; its sign reveals the sign of the
magnon spin. There is no feature of σ (k, ω) in Fig. 4(b),
in agreement with the previous section. In contrast, σ (k, ω)
becomes zero (gray color) in Fig. 4(d), indicating that the
magnon spin is suppressed due to ellipticity or “squeezing,”
which is in agreement with Ref. [71]. Without squeezing but
nonzero DMI we identify spin-up and spin-down magnons by
the antisymmetric blue-red features in Fig. 4(f). In the pres-
ence of squeezing and DMI this asymmetric feature survives
[panel (h)] and shows that the spin expectation value continu-
ously goes through zero upon crossing k = 0, an observation
which is in agreement with Fig. 1(c).

In the previous section, we obtained a nonzero magnonic
spin polarization for the case in Figs. 4(g) and 4(h) [which are
respectively reminiscent of Figs. 1(b) and 1(c)], but zero effect
for the other cases. We will now put this prediction to the test.

To do so, direct nonequilibrium simulations with an im-
printed temperature gradient were performed. The spin chain
was separated into three parts of equal length (160 spins
each). The terminating parts have temperature T ± �T/2,
while the temperature in the central part linearly interpolates
between the two ends. Following this temperature profile, a
heat bath with temperature Ti is assigned to each spin i. After
establishing a steady state in this nonequilibrium situation,
the spin density 〈S〉 = 1

160

∑320
i=161〈Si〉 of the central chain

segment is measured and normalized to the number of spins
in this segment. (This nonequilibrium averaged 〈S〉 takes over
the role of 〈�〉.)
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FIG. 5. Results from direct nonequilibrium spin dynamics sim-
ulations of the thermally induced magnonic analog of the Edelstein
effect in an anisotropic antiferromagnetic spin chain; parameters read
J = 1 meV, λ = 1.02, and α = 10−4. (a) Nonequilibrium spin den-
sity 〈Sz〉 in dependence on temperature difference �T for selected
parameter combinations. (b) 〈Si〉 (i = x, y, z) in dependence on �T .
An average temperature of T = 0.2 K was used for all simulations.

There is an additional technicality of the simulation: Since
two neighboring spins in the central chain segment experience
slightly different temperatures (Ti �= Ti+1), their net moment
does not compensate exactly. Repeating this argument for all
spins of the central segment, we conclude that there is a tiny
net magnetization simply due to the temperature dependence
of the sublattice magnetizations. The sign of this artificial
magnetization is determined by the direction of the first spin at
the cold end of the central segment. This artificial effect would
superimpose with the magnon analog of the Edelstein effect.
Thus, to avoid the non-Edelstein contribution, we simulate
two uncoupled spin chains with opposite spin textures in
parallel. The non-Edelstein contributions are exactly opposite,
because the sublattice magnetization is reversed, and sum to
zero. In contrast, the extrinsic Edelstein contributions are time
reversal even as shown in Eq. (37b) and do not cancel out.

Our simulation results are presented in Fig. 5. The z
spin accumulation 〈Sz〉 is zero in equilibrium [�T = 0 in
Fig. 5(a)], as expected for an antiferromagnet in zero magnetic
field. It stays zero in nonequilibrium (�T �= 0), if either DMI
or squeezing (or both) are absent [compare brown, blue, and
purple marks in Fig. 5(a)]. However, it becomes nonzero if
DMI and squeezing are present (red marks), in full agreement
with theory.

The other Cartesian components of the spin density, i.e.,
〈Sx〉 and 〈Sy〉, are zero even in nonequilibrium [blue and green
marks in Fig. 5(b)]. This is not surprising, because no magnon
state has a nonzero x or y spin. Thus, a nonequilibrium
state cannot give rise to spin density of those components.
In contrast, 〈Sz〉 increases approximately linearly with the
external force �T .

We note in passing other results that are not explicitly
shown. We found that (i) reversing D reverses 〈Sz〉 due to the
reversion of the magnon spin, (ii) increasing λ increases the
magnon gap, leading to a decreasing 〈Sz〉, and (iii) increasing
the Gilbert damping α diminishes 〈Sz〉, because the magnon
transport lifetime decreases.

Overall, we find excellent qualitative agreement with the-
ory (Sec. V A). However, we mention that we cannot compare

FIG. 6. (a), (b) Noncollinear spin textures on the kagome lattice,
with (a) negative vector chirality (NVC) and (b) staggered vector
chirality (SVC). (c) Noncollinear antiferromagnetic ground state on
the 2D triangular lattice.

numbers, because the classical white noise used to model
the temperature bath results in a Rayleigh-Jeans distribution
rather than in the true Bose-Einstein distribution. Thus, the
simulation suffers from the classical equipartition and does
not account for the quantum freezing of degrees of freedom
as temperature goes to zero.

VII. CONCLUSION

We have shown that a temperature gradient can induce a
nonequilibrium spin density due to magnonic transport in an-
tiferromagnetic insulators with inversion asymmetry and spin
nonconservation. Our linear-response theory revealed both
intrinsic and extrinsic contributions that behave differently
under time reversal. Consequently, these two contributions
correspond to different elements of the response tensor, which
can facilitate their experimental disentanglement, e.g., in the
presence of magnetic domains. Our proposal can be real-
ized in (quasi-)2D and 3D noncollinear antiferromagnets, for
which we find sizable effects in realistic material candidates.
Our predictions can be tested by transport measurements sim-
ilar to those used for detection of the inverse spin Hall effect,
by magneto-optical Kerr microscopy, or by magnetic sens-
ing based on the nitrogen-vacancy (NV ) centers. Given the
omnipresence of inversion-symmetry-breaking interfaces (or
surfaces) in experimental setups, observation of the magnonic
analog of the Edelstein effect can stimulate further develop-
ments in the field of spintronics. In particular, with the impor-
tant role played by the electronic Edelstein effect in modern
spintronics in mind, we hope to have stimulated experimental
research on the magnonic analog of the Edelstein effect.

The abundance of antiferromagnetic materials holds great
promise for the identification of well-suited experimental can-
didates. In kagome noncollinear antiferromagnets, the copla-
nar magnetic order can exhibit three types of vector chirali-
ties: positive, negative, and staggered, which are respectively
abbreviated by PVC, NVC, and SVC [75,88] and depicted in
Figs. 2(a), 6(a), and 6(b). Their distinct magnetic symmetries
cause distinct magnonic spin polarization responses, which
are tabulated in Table I. Besides kagome magnets, quasi-2D
triangular antiferromagnets [cf. Fig. 6(c)] with the 120◦ spin
order [89,90] could be suitable candidates. Such systems
as RbFe(MoO4)2 [91] and Ba3NiNb2O9 [92] share symme-
tries with the PVC kagome noncollinear antiferromagnets,
resulting in identical response tensor shapes (cf. Table I).
Similar to kagome noncollinear antiferromagnets, the 3D
breathing pyrochlores can exhibit magnetic orders different

024427-9



LI, MOOK, RAELIARIJAONA, AND KOVALEV PHYSICAL REVIEW B 101, 024427 (2020)

from the all-in–all-out order [79,80], which changes their
magnetic symmetries and, thus, the expected response tensor
shapes. Experimentally, the breathing pyrochlore materials
Ba3Yb2Zn5O11 [93,94], LiInCr4O8 [95] have been studied, all
of which may be considered for a proof-of-principle study of
our predictions.

Note added. Recently, we noticed that Ref. [96] discussed
the intrinsic magnon spin polarization for a compensated fer-
rimagnet with different g factors for two magnetic sublattices
but did not consider Dzyaloshinskii-Moriya interactions.
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APPENDIX A: LINEAR RESPONSE FOR
ANTIFERROMAGNETS

1. General theory

For the μ component of a spatially averaged observable
Aμ = 1

V

∫
dr�†(r)Âμ�(r), the nonequilibrium response to a

temperature gradient is

〈Aμ〉ne = lim
ω→0

1

iω
[�μν (ω) − �μν (0)]∇νφ, (A1)

where the correlator in frequency space is defined as

�μν (iωm) = −
∫ β

0
dτeiωmτ 〈Tτ Aμ(τ )Jq

ν (0)〉. (A2)

In momentum space, Aμ = 1
V

∑
k �

†
kAμ,k�k and Jq

ν =∑
k �

†
kJq

ν,k�k, with Jq
ν,k = 1

4 (Hkσ3vν,k + vν,kσ3Hk ). Here, Jq
ν

comes from ∂H ′
∂t = i

h̄ [H, H ′] = Jq
ν ∇νφ; see the Supplemental

Material of Refs. [29,43]. Plugging in the above expressions,
the correlation tensor can be presented as

�μν (iωm) = − 1

V

∑
k,k′

∫ β

0
dτeiωmτ

〈
�

†
k (τ )Aμ,k�k(τ )�†

k′J
q
ν,k′�k′

〉

= − 1

V

∑
k,k′

∫ β

0
dτeiωmτ (Aμ,k )αγ

(
Jq
ν,k′

)
ρσ

〈
Tτ�

†
k,α (τ )�k,γ (τ )�†

k′,ρ (0)�k′,σ (0)
〉
. (A3)

According to Wick’s theorem,

〈Tτ�
†
k,α (τ )�k,γ (τ )�†

k′,ρ (0)�k′,σ (0)〉connected = 〈Tτ�k′,σ (0)�†
k,α (τ )〉〈Tτ�k,γ (τ )�†

k′,ρ (0)〉
+ 〈Tτ�

†
k,α (τ )�†

k′,ρ (0)〉〈Tτ�k′,γ (τ )�k,σ (0)〉. (A4)

Here, the second anomalous term can be shown to be equivalent to the first term. First, we note that the basis �k obeys the
particle-hole symmetry, �k = (�†

−kσ1)T , which leads to the relation

Aμ = 1

V

∑
k,αβ

�
†
k,α (Aμ,k )αβ�k,β = 1

V

∑
k,λγ

�
†
−k,λ(σ1AT

μ,kσ1)λγ �−k,γ . (A5)

Hence, we gain the relation σ1AT
k,μσ1 = Aμ,−k, which will be used repeatedly in the later proof. Second, the systematic linear-

response analysis needs a plain expression of the particle-hole space Green function, whose definition is G(k, τ ; k′, 0)i, j ≡
G(k, k′; τ )i, j ≡ −〈Tτ�k,i(τ )�†

k′, j (0)〉. We derive the Green-function expression by virtue of its equation of motion,

∂τG(k, k′; τ )αβ = −δ(τ )σ3,αβδk,k′ − (σ3Hk )αγG(k, k′; τ )γ β, (A6)

where we used the relation

∂τ�k,α (τ ) = [H, �k,α (τ )] = −1

2
(σ3Hk )αγ �k,γ + i

2
�

†
−k,γ (H−kσ2)γα = −(σ3Hk )αγ �k,γ . (A7)

The equation of motion [Eq. (A6)] in matrix form reads

(∂τ + σ3Hk )G(k, k′; τ ) = −σ3δ(τ )δk,k′ , (A8)

so that G(k, k′; τ ) = −σ3δ(τ )δk,k′
∂τ +σ3Hk

and G(k, k′; ikn) = σ3
ikn−σ3Hk

δk,k′ in frequency-momentum space.
Now we show that the anomalous term in Eq. (A4) can be alternatively expressed, with the help of particle-hole symmetry,

in the form of a Green function,

〈Tτ�
†
k,α (τ )�†

k′,ρ (0)〉 = 〈Tτ σ1,αδ�−k,δ (τ )�†
k′,ρ (0)〉 = −σ1,αδG(−k, k′; τ )δρ,

〈Tτ�k′,γ (τ )�k,σ (0)〉 = 〈Tτ�k,γ (τ )�†
−k′,μ(0)σ1,μσ 〉 = −G(k,−k′; τ )γμσ1,μσ .

Therefore, Eq. (A4) and the correlation tensor in Eq. (A3) are rewritten in terms of a Green function as

〈Tτ�
†
k,α (τ )�k,γ (τ )�†

k′,ρ (0)�k′,σ (0)〉 = Gσα (k′, k; −τ )Gγ ρ (k, k′; τ ) + [σ1G(−k, k′; τ )]αρ[G(k,−k′; τ )σ1]γ σ , (A9)
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and

�μν (iωm) = − 1

V

∑
k,k′

∫ β

0
dτeiωmτ (Aμ,k )αγ (Jq

ν,k′)ρσ {Gσα (k′, k; −τ )Gγ ρ (k, k′; τ ) + [σ1G(−k, k′; τ )]αρ[G(k,−k′; τ )σ1]γ σ },

(A10)

respectively. Furthermore, with the aid of the Green-function relation G(−k, τ ) = −σ1G(k,−τ )T σ1, we can prove the
equivalence of the first and second part on the right-hand side of Eq. (A10). As a result, the correlation function becomes

�μν (iωm) = − 2

V

∑
k

∫ β

0
dτeiωmτ tr[Aμ,kG(k, τ )Jq

ν,kG(k; −τ )], (A11)

where G(k, τ ) = σ3
ikn−σ3Hk

. Let’s transform the Green function to frequency space with G(k; τ ) = 1
β

∑
iqn

e−iqnτG(k; iqn), then

�μν (iωm) = 2

V

∑
k

∫ +∞

−∞

dω1

2π

dω2

2π
tr[Aμ,kS(k, ω1)Jq

ν,kS(k, ω2)]
nB(ω1) − nB(ω2)

ω1 − ω2 − iωm
. (A12)

Here, we performed the Matsubara summation and utilized G(k; ikn) = ∫ +∞
−∞

dω
2π

S(k,ω)
ikn−ω

, with S(k, ω) being the spectral function.
Going back to the real time space and taking the zero frequency limit, we obtain the response tensor

Kμν = −i
∂�μν (ω + i0+)

∂ω
|ω→0

= 2

V

∑
k

∫ +∞

−∞

dε

2π
nB(ε)tr

[
(GR − GA)

(
Aμ,k

∂GR

∂ε
Jq
ν,k − Jq

ν,k

∂GA

∂ε
Aμ,k

)]
, (A13)

where we used the relation ∫ ∞

−∞

dω

2π

S(k, ω)

(ε − ω ± i0+)2
= − ∂

∂ε

∫ ∞

−∞

dω

2π

S(k, ω)

ε − ω ± i0+ = −∂GR/A

∂ε
(A14)

and the expression S(k, ε) = i(GR − GA).

2. In the eigenstate basis

To distinguish the intraband and interband contributions, we rewrite the response tensor in Eq. (A13) in the eigenstate basis
via the transformation �k = Tk�k. By definition, we have the Green-function transformation G(k; τ ) = Tkg(k, τ )T †

k , where
g(k, τ ) = −〈Tτ�k(τ )�†

k(0)〉 and gR/A(k, ε) = σ3
ε−σ3Ek±i0+ . After this transformation, we obtain

Kμν = 2

V

∑
k

∫ +∞

−∞

dε

2π
nB(ε)tr

[
(gR − gA)

(
Aμ,k

∂gR

∂ε
Jν,k − Jν,k

∂gA

∂ε
Aμ,k

)]
, (A15)

where Jν,k = T †
k Jq

ν,kTk and Aμ,k = T †
k Aμ,kTk. We split the expression into two parts: intraband and interband contributions.

Owing to the hermitian conjugate property of operators, we write the response tensor elements as

Kμν = 2

V

∑
k

∑
mn

∫ +∞

−∞

dε

2π
nB(ε)

[(
gR

m − gA
m

)(
(Aμ,k )mn

∂gR
n

∂ε
(Jν,k )nm − (Jν,k )mn

∂gA
n

∂ε
(Aμ,k )nm

)]

= 2i

V

∑
k

∑
mn

(Aμ,k )mn(Jν,k )nm
σ3,mmσ3,nn{nB[(σ3Ek )mm] − nB[(σ3Ek )nn]}

[(σ3Ek )mm − (σ3Ek )nn + i0+]2
, (A16)

where we took the approximation gR
m − gA

m = i2Im(gR
m) = −i2πσ3,mmδ[ε − (σ3Ek )mm]. If we incorporate the magnon spectrum

broadening �m into the Green function, i.e., gR
m(ε) = σ3,mm

ε−(σ3Ek )mm+i�m
, the response tensor can be naturally divided into two parts,

Kμν = K intra
μν + K inter

μν , where

K intra
μν = 1

V

∑
k

∑
n

1

�n
(Jk,ν )nn(Aμ,k )nn∂εnB[(σ3Ek )nn], (A17)

and

K inter
μν = 2i

V

∑
k

∑
m �=n

(Aμ,k )mn(Jν,k )nm
σ3,mmσ3,nn{nB[(σ3Ek )mm] − nB[(σ3Ek )nn]}

[(σ3Ek )mm − (σ3Ek )nn]2
. (A18)
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The limit �n → 0 for K inter
μν is taken here. In consideration of A†

μ = Aμ and (Jq
ν )† = Jq

ν , Eq. (A18) can be transformed to

K inter
μν = 4

V

∑
k

∑
m �=n

Im[(σ3Aμ,k )nm(σ3Jk,ν )mn]nB[(σ3Ek )nn]

[(σ3Ek )mm − (σ3Ek )nn]2
. (A19)

The intraband response Eq. (19) in the main text can be recovered if we consider Jk,ν = 1
4 (Ekσ3ṽk,ν + ṽk,νσ3Ek ) whose diagonal

components read

(Jk,ν )nn = 1
2 (σ3Ek )nn(ṽν,k )nn, (A20)

where

ṽk,ν = ∂kν
Ek − (∂kν

T †
k )HkTk − T †

k Hk(∂kν
Tk ). (A21)

From the paraunitary relation of Tk and ∂kν
(Tkσ3T †

k ) = 0, we get ∂kν
T †

k = −Tkσ3(∂kν
Tk )σ3T †

k . From T †
k HkTk = Ek and (Tk )−1 =

σ3T †
k σ3, we have T †

k Hk = Ekσ3T †
k σ3. Therefore, the diagonal elements of ṽk,ν are shown to be

(ṽk,ν )nn = (∂kν
Ek )nn + (T †

k σ3∂kν
Tkσ3Ek )nn − (Ekσ3T †

k σ3∂kν
Tk )nn = (∂νEk )nn; (A22)

thus,

(Jk,ν )nn = 1
2 (σ3Ek )nn(∂kν

Ek )nn. (A23)

By inserting Eq. (A23) into Eq. (A17), we arrive at

K intra
μν = 1

V

∑
k

2N∑
n=1

1

2�n
(Aμ,k )nn∂kν

Ek,nn(σ3Ek )nn∂εnB[(σ3Ek )nn]. (A24)

Given the relation nB(x) = −1 − nB(−x), the band index can be confined to the particle space, i.e., 1 � n � N ,

K intra
μν = 1

V

∑
k

N∑
n=1

1

2�n
[(Aμ,k )nn + (Aμ,−k )(n+N )(n+N )]∂kν

Ek,nnEk,nn∂εnB[Ek,nn]. (A25)

Applying particle-hole symmetry (PHS), (Aμ,k )nn = (Aμ,−k )(n+N )(n+N ), replacing Aμ,k by Sμ,k and taking ∇νφ = −∇νT/T
into account, we can obtain the intraband response Eq. (19).

On the other hand, by plugging the expression of Jν,k into Eqs. (A18) or (A19), the interband part can be reorganized as
below:

K inter
μν = 1

V

∑
k

∑
m �=n

i

2
(Aμ,k )nm[(σ3Ek )mm(vν )mn + (vν )mn(σ3Ek )nn]

σ3,mmσ3,nn{nB[(σ3Ek )nn] − nB[(σ3Ek )mm]}
[(σ3Ek )mm − (σ3Ek )nn]2

,

= 1

V

∑
k

2N∑
n=1

−(
�A

n,k

)
μν

ε̄n,knB(ε̄n,k ) − (mA
n,k )μνnB

(
ε̄n,k

)
, (A26)

with
(
�A

n,k

)
μν

=
∑

m( �=n)

2Im[(σ3Aμ,k )nm(σ3ṽν,k )mn]

(ε̄n,k − ε̄m,k )2
,

(
mA

n,k

)
μν

=
∑

m( �=n)

−Im[(σ3Aμ,k )nm(σ3ṽν,k )mn]

ε̄n,k − ε̄m,k
. (A27)

When we identify the operator Âμ as magnon spin operator �̂μ, the tensors above become spin-dependent tensors,

(
��

n,k

)
μν

=
∑

m( �=n)

(σ3)nn(σ3)mm
2Im(〈un,k|�μ|um,k〉〈um,k|vν |un,k〉)

(ε̄n,k − ε̄m,k )2
, (A28)

(
m�

n,k

)
μν

= −
∑

m( �=n)

(σ3)nn(σ3)mm
Im(〈un,k|�μ|um,k〉〈um,k|vν |un,k〉)

ε̄n,k − ε̄m,k
. (A29)

The tensor (��
n,k )μν defined in Eq. (A28) exists in both particle and hole space, and we can verify that this tensor fulfills two

relations:
(1) Summation rule:

2N∑
n=1

(
��

n,k

)
μν

=
∑
m �=n

(σ3)nn(σ3)mmIm

[ 〈un,k|�μ|um,k〉〈um,k|vν |un,k〉
(ε̄n,k − ε̄m,k )2

+ 〈um,k|�μ|un,k〉〈un,k|vμ|um,k〉
(ε̄n,k − ε̄m,k )2

]
= 0. (A30)

In the middle step, we utilized the property that the band indices m, n can be interchanged.
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(2) Mapping between particle and hole space. We note that the velocity vk satisfies

σ1vkσ1 = σ1
∂Hk

∂k
σ1 = −v∗

−k. (A31)

At the same time, the spin operator obey particle-hole symmetry,

σ1�μσ1 = �μ. (A32)

Using the particle-hole symmetry property of the eigenstates and eigenvalues, we are able to show

(
��

n,k

)
μν

=
∑

m( �=n)

(σ3)nn(σ3)mm
2Im(〈un,k|�μ|um,k〉〈um,k|vν,k|un,k〉)

(ε̄n,k − ε̄m,k )2

=
∑

m+N ( �=n+N )

(σ3)n+N,n+N (σ3)m+N,m+N
2Im(〈u∗

n+N,−k|σ1�μσ1|u∗
m+N,−k〉〈u∗

m+N,−k|σ1vν,kσ1|u∗
n+N,−k〉)

(ε̄n+N,−k − ε̄m+N,−k )2

=
∑

m( �=n+N )

(σ3)n+N,n+N (σ3)mm
2Im[(〈un+N,−k|�μ|um,−k〉)∗(〈um,−k| − vν,−k|un+N,−k〉)∗]

(ε̄n+N,−k − ε̄m,−k )2

= (
��

n+N,−k

)
μν

. (A33)

3. Detailed calculation of dipole contribution coefficient Dμν

As an example, we calculate Dyx by choosing B = B
q sin(q1 · r)êy with q1 = qêx. Substituting Eq. (31) into Eq. (30), we

obtain

D̃yx = lim
q→0

1

2V

∑
k

∑
mn

1

i2q
g(ε̄nk )(σ3)nn(σ3)mmε̄nk

[ 〈unk|σ3|um,k+q1〉〈um,k+q1 |(�y,k + �y,k+q1 )|un,k〉
ε̄nk − ε̄m,k+q1

− (q1 → −q1)

]
+ c.c.

= lim
q→0

1

2V

∑
k

∑
mn

1

i2q
[g(ε̄nk )ε̄nk − g(ε̄m,k+q1 )ε̄m,k+q1 ](σ3)nn(σ3)mm

〈unk|σ3|um,k+q1〉〈um,k+q1 |(�y,k + �y,k+q1 )|un,k〉
ε̄nk − ε̄m,k+q1

+ c.c.

(A34)

Taking the limit, we get for m �= n,

(D̃yx )1 = 1

V

∑
k

∑
m �=n

1

2
[g(ε̄mk )ε̄mk − g(ε̄n,k )ε̄n,k](σ3)nn(σ3)mm

i〈un,k|σ3|∂kx um,k〉〈um,k|�y|un,k〉
ε̄n,k − ε̄m,k

+ c.c.

= 1

V

∑
k

∑
m �=n

−1

2
[g(ε̄mk )ε̄mk − g(ε̄n,k )ε̄n,k](σ3)nn(σ3)mm

i〈un,k|vx|um,k〉〈um,k|�y|un,k〉
(ε̄n,k − ε̄m,k )2

+ c.c.. (A35)

For m = n, we have

(D̃yx )2 = 1

V

∑
k

∑
n

1

2i
[g(ε̄n,k ) + g′(ε̄n,k )ε̄n,k][〈un,k|σ3∂kx un,k〉〈un,k|�y|un,k〉 + (σ3)nn〈∂kx un,k|�y|un,k〉] + c.c.

= 1

V

∑
k

∑
n

−1

2
[g(ε̄n,k ) + g′(ε̄n,k )ε̄n,k](σ3)nn(σ3)mm

i〈un,k|vx|um,k〉〈um,k|�y|un,k〉
ε̄n,k − ε̄m,k

+ c.c. (A36)

Above vx = ∂kx H . In total, we have

D̃yx = (D̃yx )1 + (D̃yx )2 = 1

V

∑
nk

g(ε̄nk )ε̄nk
(
��

n,k

)
yx + [g(ε̄n,k ) + g′(ε̄n,k )ε̄n,k]

(
m�

n,k

)
yx. (A37)

The calculation of the other components is analogous and the general result is

D̃μν = 1

V

∑
nk

g(ε̄nk )ε̄nk
(
��

n,k

)
μν

+ [g(ε̄n,k ) + g′(ε̄n,k )ε̄n,k]
(
m�

n,k

)
μν

. (A38)

Finally, by using Eq. (28) we obtain

Dμν = 1

β

∫ β

0
dβ̄D̃μν = 1

V

∑
nk

((
��

n,k

)
μν

∫ ε̄nk

0
dηg(η) + (

m�
n,k

)
μν

g(ε̄n,k )

)
. (A39)

Here we used the relation 1
β

∫ β

0 dβ̄g(ε̄n,k )ε̄n,k = ∫ ε̄nk

0 dηg(η) with g(η) = 1
eβ̄η−1

and d
dβ̄

[β̄g(ε̄n,k )] = g(ε̄n,k ) + g′(ε̄n,k )ε̄n,k.
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4. Total intrinsic response coefficient χin
μν

Adding the Kubo formula Eq. (22) and dipole moment contributions Eq. (34) [or Eq. (22)], the total response reads

K inter
μν + Dμν = 1

V

∑
nk

(
��

n,k

)
μν

[−ε̄nkg(ε̄nk ) +
∫ ε̄nk

0
dηg(η)] = − 1

V

∑
nk

(
��

n,k

)
μν

∫ ε̄nk

0
dηη

dg(η)

dη

= − 1

V

∑
nk

(
��

n,k

)
μν

c̃1(ε̄nk ), (A40)

where c̃1(x) = ∫ x
0 dηη

dg(η)
dη

with g(η) = 1
eβη−1 . Using the relation −g(−η) = 1 + g(η), we have c̃(x) = c̃(−x). Therefore, the

response function can be reduced to

K inter
μν + Dμν = − 1

V

N∑
n=1

∑
k

[(
��

n,k

)
μν

c̃1(εnk ) + (
��

n+N,k

)
μν

c̃1(−εn,−k )
] = − 1

V

N∑
n=1

∑
k

[(
��

n,k

)
μν

+ (
��

n+N,−k

)
μν

]
c̃1(εn,k )

= − 1

V

N∑
n=1

∑
k

[(
��

n,k

)
μν

+ (
��

n+N,−k

)
μν

](
c̃1(εn,k ) −

∫ ∞

0
dηη

dg(η)

dη

)

= −kBT

V

N∑
n=1

∑
k

[(
��

n,k

)
μν

+ (
��

n+N,−k

)
μν

]
c1[g(εn,k )] = −2kBT

V

N∑
n=1

∑
k

(
��

n,k

)
μν

c1[g(εn,k )]. (A41)

Here we used the properties of Berry curvature shown in Eqs. (A30) and (A33), and the relation − ∫ ∞
εn

η
dg(η)

dη
= 1

β
c1[g(εn)].

Considering the relation χ in
μν∇νT = (K inter

μν + Dμν )∇νφ and ∇νφ = −∇νT/T , we obtain the total intrinsic response coefficient
in Eq. (35).

APPENDIX B: DETAILS OF THE MODELS

1. Antiferromagnetic spin chain

We recapitulate that the Hamiltonian for the antiferromagnetic spin chain is

H =
∑

i

∑
δ=±1

[
J
(
γ Sx

1,iS
x
2,i+ν + Sy

1,iS
y
2,i+ν + λSz

1,iS
z
2,i+ν

) + Dν
12ez · (S1,i × S2,i+ν )

]
(B1)

with exchange and DMI parameters as stated in the main text. After performing the Holstein-Primakoff transformation, the
quadratic Hamiltonian written in the basis �k = (a1,k, a2,k, a†

1,−k, a†
2,−k )T reads

Hk = JS

⎡
⎢⎣

2λ 2�− cos k 0 2�+ cos k + i�k

2�− cos k 2λ 2�+ cos k + i�−k 0
0 2�+ cos k − i�k 2λ 2�− cos k

2�+ cos k − i�−k 0 2�− cos k 2λ

⎤
⎥⎦, (B2)

where �± = 1±γ

2 , �k = ∑
ν δDνeikν/J = i2D0 sin k + 2δD cos k, with D0 = D1+D2

2J and δD = D1−D2
2J .

2. Noncoplanar kagome antiferromagnet

We consider the noncoplanar kagome antiferromagnet described by

H =
∑
〈i j〉

J1Si · S j + Di j · (Si × S j ) +
∑
〈〈i j〉〉

J2Si · S j, (B3)

where Di j = Dp,i j + Dz,i j ẑ. The spins cant out of the 2D plane with a small angle η, and the spins’ projection on the the x-y
plane forms angles θi (i = 1, 2, 3) with respect to the x axis, specifically, θ1 = −π/6, θ2 = π/2, and θ3 = 7π/6. For each spin
Si, we choose a local reference frame defined as follows:

ei,x = {sin θi − cos θi, 0}, ei,y = {sin η cos θi, sin η sin θi,− cos η}, ei,z = {cos η cos θi, cos η sin θi, sin η}. (B4)

024427-14



MAGNONIC ANALOG OF THE EDELSTEIN EFFECT IN … PHYSICAL REVIEW B 101, 024427 (2020)

For a given spin Si, in the global frame, its components can be connected to the local frame expression S̃i by

Sα
i = eα · (

S̃β
i ei,β

) = Ri,αβ S̃β
i , (B5)

where Ri,αβ = eα · ei,β , or in matrix form,

Ri =
⎛
⎝ sin θi sin η cos θi cos η cos θi

− cos θi sin η sin θi cos η sin θi

0 − cos η sin η

⎞
⎠. (B6)

For the general spin-spin interaction a correspondence between the two frames can be written as Sα
i �

i j
αβSβ

j = S̃α
i (RT

i �i jR j )αβ S̃β
j .

The interaction matrices are �
i j
αβ = Jδαβ for exchange and �

i j
αβ = Dρ

i jε
ραβ for DMI. Using these relations, we express the

noninteracting magnon Hamiltonian in terms of the local reference frames as

HJ1 = J1

∑
〈i j〉

cos θi j S̃i · S̃ j + 2 sin2(θi j/2)
(

cos2 ηS̃y
i S̃y

j + sin2 ηS̃z
i S̃z

j

) + sin η sin θi j ẑ · (S̃i × S̃ j ),

HJ2 = J2

∑
〈〈i j〉〉

cos θi j S̃i · S̃ j + 2 sin2(θi j/2)
(

cos2 ηS̃y
i S̃y

j + sin2 ηS̃z
i S̃z

j

) + sin η sin θi j ẑ · (S̃i × S̃ j ),

HDz =
∑
〈i j〉

−si jDz
[

sin θi j
(
S̃x

i S̃x
j + sin2 ηS̃y

i S̃y
j + cos2 ηS̃z

i S̃z
j

) − sin η cos θi j ẑ · (S̃i × S̃ j )
]
,

HDp =
∑
〈i j〉

−si jDp

[
sin(2η) sin

(
θi j

2

)(
S̃z

i S̃z
j − S̃y

i S̃y
j

) + cos η cos

(
θi j

2

)
ẑ · (S̃i × S̃ j )

]
,

HDR =
∑
〈i j〉

−si jνi jDR

[
sin(2η) sin

(
θi j

2

)(
S̃z

i S̃z
j − S̃y

i S̃y
j

) + cos η cos

(
θi j

2

)
ẑ · (S̃i × S̃ j )

]
. (B7)

Here we used the notation that θi j = θi − θ j = −si j
2π
3 , Dz,i j = Dzsi j , and Dp,i j = −si jDp[cos( θi+θ j

2 )x̂ + sin( θi+θ j

2 )ŷ], where si j

is used to express the sign convention: si j = 1 as the indices i, j run clockwise around the triangle loop and si j = −1 when
they run counterclockwise. The notation νi j takes care of the opposite convention for Rashba-DMI in upward and downward
triangles with νi j = ±1 for (i j) ∈ �/∇. Plugging in the expression of θi j and performing the Holstein-Primakoff transformation

S̃x
i =

√
S
2 (b†

i + bi ), S̃y
i = i

√
S
2 (b†

i − bi ), S̃z
i = (S − b†

i bi ), we can obtain the nearest-neighbor interaction

HNN = 1

2
S

∑
〈i j〉

[(
�

(0)
1 + νi j�

(0)
R

)
(b†

i bi + b†
jb j ) + (�1,i j + νi j�R,i j )b

†
i b j + H.c. + (�′

1 + νi j�
′
R)b†

i b†
j + h.c.

]
(B8)

with

�
(0)
1 = J1(1 − 3 sin2 η) −

√
3[Dz cos2 η + Dp sin(2η)], �1,i j = �re

1 + isi j�
im
1 ,

�re
1 = 1

2 [(1 − 3 sin2 η)J1 +
√

3(1 + sin2 η)Dz −
√

3 sin(2η)Dp], �im
1 = cos ηDp + sin η(Dz +

√
3J1),

�′
1 = 1

2 [cos2 η(
√

3Dz − 3J1) +
√

3 sin(2η)Dp], (B9)

and

�
(0)
R = −

√
3DR sin 2η, �R,i j = −

√
3

2
DR sin(2η) + isi jDR cos η, �′

R =
√

3

2
sin(2η)DR. (B10)

In a similar way, we get second-nearest neighbor interaction, i.e., the second-nearest exchange, as

HNNN = 1

2
S

∑
〈〈i j〉〉

[�(0)
2 (b†

i bi + b†
jb j ) + �2,i jb

†
i b j + H.c. + �′

2b†
i b†

j + H.c.] (B11)

with

�
(0)
2 = J2(1 − 3 sin2 η), �2,i j = �re

2 + isi j�
im
2 , �re

2 = 1
2 (1 − 3 sin2 η)J2,

�im
2 =

√
3 sin ηJ2, �′

2 = − 3
2 cos2 ηJ2. (B12)
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Let’s denote HNN and HNNN by H1 and H2, respectively. The total Hamiltonian can be written as H = H1 + H2 + HR. By
performing Fourier transformation, Hm (m = 1, 2) becomes

Hm = S

2

∑
r,αβ

∑
λ=±1

1

2

{
�(0)

m

[
b†

α (r)bα (r) + b†
β

(
r + λδ

(m)
αβ

)
bβ

(
r + λδ

(m)
αβ

)] + �m,αβb†
α (r)bβ

(
r + λδ

(m)
αβ

) + H.c.

+�′
mb†

α (r)b†
β

(
r + λδ

(m)
αβ

) + H.c.}

= S

2

∑
k,αβ

[
4�(0)

m δαβ + 2�m,αβ cos
(
k · δ

(m)
αβ

)]
b†

α,kbβ,k + �′
m cos

(
k · δ

(m)
αβ

)
(b†

α,kb†
β,−k + bα,kbβ,−k ). (B13)

Here δ
(1)
12 = e3, δ(1)

23 = e1, δ(1)
31 = e2 and δ

(2)
12 = e′

3, δ(2)
23 = e′

1, δ(2)
31 = e′

2. We choose δ
(m)
αβ = −δ

(m)
βα and e1 = (− 1

2 ,−
√

3
2 ), e2 = (1, 0),

e3 = (− 1
2 ,

√
3

2 ), e′
1 = e2 − e3, e′

2 = e3 − e1, e′
3 = e1 − e2. In a similar way, we can show

HR = S

2

∑
k,αβ

i2�R,αβ sin
(
k · δ

(1)
αβ

)
b†

α,kbβ,k + i�′
m sin

(
k · δ

(1)
αβ

)
(b†

α,kb†
β,−k + bα,kbβ,−k ). (B14)

Finally, the Hamiltonian is expressed in the basis �k = (b1,k, b2,k, b3,k, b†
1,−k, b†

2,−k, b†
3,−k )T as H = S

2

∑
k �kHk�k with

Hk =
(

A0 + Ak Bk
Bk A0 + A∗

k

)
. (B15)

Here, A0 = 2(�(0)
1 + �

(0)
2 )13×3 and

Ak =
⎛
⎝ 0 cos k3�1 cos k2�

∗
1

cos k3�
∗
1 0 cos k1�1

cos k2�1 cos k1�
∗
1 0

⎞
⎠ +

⎛
⎝ 0 cos p3�2 cos p2�

∗
2

cos p3�
∗
2 0 cos p1�2

cos p2�2 cos p1�
∗
2 0

⎞
⎠ +

⎛
⎝ 0 i sin k3�R −i sin k2�

∗
R

−i sin k3�
∗
R 0 i sin k1�R

i sin k2�R −i sin k1�
∗
R 0

⎞
⎠,

Bk = �′
1

⎛
⎝ 0 cos k3 cos k2

cos k3 0 cos k1

cos k2 cos k1 0

⎞
⎠ + �′

2

⎛
⎝ 0 cos p3 cos p2

cos p3 0 cos p1

cos p2 cos p1 0

⎞
⎠ + �′

R

⎛
⎝ 0 i sin k3 −i sin k2

−i sin k3 0 i sin k1

i sin k2 −i sin k1 0

⎞
⎠. (B16)

We abbreviated the notations: ki = k · ei, pi = k · e′
i, �m =

�re
m + i�im

m (m = 1, 2), �R = −
√

3
2 DR sin(2η) + iDR cos η

and considered the convention that s12 = s23 = s31 = 1 and
si j = −s ji.

3. Breathing pyrochlore antiferromagnet

We consider the model

H = J
∑
〈i j〉∈u

Sri · Sr j + J ′ ∑
〈i j〉∈d

Sri · Sr j + D
∑

i

(Sri · ẑi )
2.

(B17)

Similar to the two-dimensional model, the magnon excitation
is represented via the local Holstein-Primakoff transforma-

tion as Sμ = (S − a†
μaμ)ẑμ +

√
S
2 (aμ + a†

μ)x̂μ − i
√

S
2 (aμ −

a†
μ)ŷμ. Therefore, the exchange interaction between two

neighboring spins is expressed as

Sμ · Sν = Sc
μSd

ν �cd
μν = S2�zz

μν − S(a†
μaμ + a†

νaν )�zz
μν

+ S

2
[a†

μaν�μν + aμaν�μν + H.c.], (B18)

where �μν = �xx
μν + �

yy
μν − i�xy

μν + i�yx
μν and �μν = �xx

μν −
�

yy
μν − i�xy

μν − i�yx
μν . Here �cd

μν = ĉμ · d̂ν with ĉμ, d̂ν being
the c, d axis of the local frame of μ and ν atoms, respec-
tively, i.e., c, d = x, y, z and μ, ν ∈ (0, 1, 2, 3) with μ �= ν.
We choose local frames as shown in Table II. It can be shown

by straightforward calculation that �zz
μν = − 1

3 , �μν = − 2
3 ,

and �μν = 4
3 eiφμν where φ01 = φ23 = −π

3 , φ02 = φ13 = π
3 ,

φ03 = φ12 = π , and other terms can be generated by φμν =
φνμ (μ �= ν). By substituting the magnon representation of
spin-spin interaction Eq. (B18) into Eq. (B17) and performing
Fourier transformation, we obtain the noninteracting magnon
Hamiltonian

H =
∑
k,μν

S[(J + J ′ − 2D)δμν − 1

3
(J + J ′e−ik·dμν )]a†

μ,kaν,k

+ S
1

3
(J + J ′e−ik·dμν )eiφμν aμ,−kaν,k + H.c., (B19)

where dμν = aν − aμ with a0 = (0, 0, 0), a1 = 1
2 (0, 1, 1),

a2 = 1
2 (1, 0, 1), and a3 = 1

2 (1, 1, 0).

TABLE II. Local coordinates of AIAO breathing pyrochlore.

μ x̂μ ŷμ ẑμ

0 1√
2
(−1, 1, 0) 1√

6
(−1, −1, 2) 1√

3
(1, 1, 1)

1 1√
2
(−1,−1, 0) 1√

6
(−1, 1,−2) 1√

3
(1, −1, −1)

2 1√
2
(1, 1, 0) 1√

6
(1,−1, −2) 1√

3
(−1, 1, −1)

3 1√
2
(1, −1, 0) 1√

6
(1, 1, 2) 1√

3
(−1, −1, 1)
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