5,871 research outputs found

    Depositing spacing layers on magnetic film with liquid phase epitaxy

    Get PDF
    Liquid phase epitaxy spacing layer is compatible with systems which are hard-bubble proofed by use of second magnetic garnet film as capping layer. Composite is superior in that: circuit fabrication time is reduced; adherence is superior; visibility is better; and, good match of thermal expansion coefficients is provided

    Investigation of the growth of garnet films by liquid phase epitaxy

    Get PDF
    Liquid phase expitaxy was investigated to determine its applicability to fabricating magnetic rare earth garnet films for spacecraft data recording systems. Two mixed garnet systems were investigated in detail: (1) Gd-Y and (2) Eu-Yb-Y. All films were deposited on Gd3Ga5012 substrates. The uniaxial anisotropy of the Gd-Y garnets is primarily stress-induced. These garnets are characterized by high-domain wall mobility, low coercivity and modest anisotropy. Characteristic length was found to be relatively sensitive to temperature. The Eu-Yb-Y garnets exhibit acceptable mobilities, good temperature stability and reasonable quality factors. The uniaxial anisotropy of these garnets is primarily growth-induced. The system is well suited for compositional "tailoring" to optimize specific desirable properties. Liquid phase epitaxy can be used to deposit Gd3Ga5012 spacing layers on magnetic garnet films and this arrangement possesses certain advantages over more conventional magnetic filmspacing layer combinations. However, it cannot be used if the magnetic film is to be ion implanted

    Metal Carbonyls and the Fischer-Tropsch Reaction Between Hydrogen and Carbon Monoxide

    Get PDF
    A study has been made of the synthesis of nickel carbonyl from carbon monoxide and nickel. No evidence was found to support the previous conclusions of Mittasch that the reaction is of second order with respect to carbon monoxide, but, on the contrary, the reaction appears to be either zero or first order with respect to the monoxide, depending on the activity of the nickel involved. Attempts to correlate this synthesis with the Fischer-Tropsch synthesis of hydrocarbons by calculating the approximate rate of carbonyl synthesis at 19

    The rings of n-dimensional polytopes

    Full text link
    Points of an orbit of a finite Coxeter group G, generated by n reflections starting from a single seed point, are considered as vertices of a polytope (G-polytope) centered at the origin of a real n-dimensional Euclidean space. A general efficient method is recalled for the geometric description of G- polytopes, their faces of all dimensions and their adjacencies. Products and symmetrized powers of G-polytopes are introduced and their decomposition into the sums of G-polytopes is described. Several invariants of G-polytopes are found, namely the analogs of Dynkin indices of degrees 2 and 4, anomaly numbers and congruence classes of the polytopes. The definitions apply to crystallographic and non-crystallographic Coxeter groups. Examples and applications are shown.Comment: 24 page

    Similar Sublattices and Coincidence Rotations of the Root Lattice A4 and its Dual

    Get PDF
    A natural way to describe the Penrose tiling employs the projection method on the basis of the root lattice A4 or its dual. Properties of these lattices are thus related to properties of the Penrose tiling. Moreover, the root lattice A4 appears in various other contexts such as sphere packings, efficient coding schemes and lattice quantizers. Here, the lattice A4 is considered within the icosian ring, whose rich arithmetic structure leads to parametrisations of the similar sublattices and the coincidence rotations of A4 and its dual lattice. These parametrisations, both in terms of a single icosian, imply an index formula for the corresponding sublattices. The results are encapsulated in Dirichlet series generating functions. For every index, they provide the number of distinct similar sublattices as well as the number of coincidence rotations of A4 and its dual.Comment: 8 pages, paper presented at ICQ10 (Zurich, Switzerland

    Six types of EE-functions of the Lie groups O(5) and G(2)

    Full text link
    New families of EE-functions are described in the context of the compact simple Lie groups O(5) and G(2). These functions of two real variables generalize the common exponential functions and for each group, only one family is currently found in the literature. All the families are fully characterized, their most important properties are described, namely their continuous and discrete orthogonalities and decompositions of their products.Comment: 25 pages, 13 figure

    The application of amino acid racemization in the acid soluble fraction of enamel to the estimation of the age of human teeth

    Get PDF
    Estimation of age-at-death for skeletonised forensic remains is one of the most significant problems in forensic anthropology. The majority of existing morphological and histological techniques are highly inaccurate, and show a bias towards underestimating the age of older individuals. One technique which has been successful in forensic age estimation is amino acid racemization in dentine. However, this method cannot be used on remains where the post-mortem interval is greater than 20 years. An alternative approach is to measure amino acid racemization in dental enamel, which is believed to be more resistant to change post-mortem. The extent of amino acid racemization in the acid soluble fraction of the enamel proteins was determined for modem known age teeth. A strong correlation was observed between the age of the tooth and the extent of racemization. No systematic bias in the direction of age estimation errors was detected. For the majority of teeth analyzed, the presence of dental caries did not affect the results obtained. In a minority of cases, carious teeth showed a higher level of racemization than would be expected given the age of the individual. These results indicate that amino acid racemization in enamel has the potential to be used in age estimation of skeletal remains. (C) 2007 Elsevier Ireland Ltd. All rights reserved

    Simulating multiple merger pathways to the central kinematics of early-type galaxies

    Full text link
    Two-dimensional integral field surveys such as ATLAS^3D are producing rich observational data sets yielding insights into galaxy formation. These new kinematic observations have highlighted the need to understand the evolutionary mechanisms leading to a spectrum of fast-rotators and slow-rotators in early-type galaxies. We address the formation of slow and fast rotators through a series of controlled, comprehensive hydrodynamical simulations sampling idealized galaxy merger scenarios constructed from model spiral galaxies. Idealized and controlled simulations of this sort complement the more 'realistic' cosmological simulations by isolating and analyzing the effects of specific parameters, as we do in this paper. We recreate minor and major binary mergers, binary merger trees with multiple progenitors, and multiple sequential mergers. Within each of these categories of formation history, we correlate progenitor gas fraction, mass ratio, orbital pericenter, orbital ellipticity, and spin with remnant kinematic properties. We create kinematic profiles of these 95 simulations comparable to ATLAS^3D data. By constructing remnant profiles of the projected specific angular momentum (lambda_R = / , triaxiality, and measuring the incidences of kinematic twists and kinematically decoupled cores, we distinguish between varying formation scenarios. We find that binary mergers nearly always form fast rotators. Slow rotators can be formed from zero initial angular momentum configurations and gas-poor mergers, but are not as round as the ATLAS^3D galaxies. Remnants of binary merger trees are triaxial slow rotators. Sequential mergers form round slow rotators that most resemble the ATLAS^3D rotators.Comment: MNRAS, in press, 12 pages, 15 figure

    General charge conjugation operators in simple Lie groups

    Get PDF
    A description of particular elements ("charge conjugation operators") found in any compact simple Lie group K is presented. Such elements Ri transform a physical state (weight vector of a basis of a representation space) into others with opposite "charge" (ith component of the weight), sometime changing also the sign of the state. It is demonstrated that exploitation of these elements and the finite subgroup N of K generated by them offer new powerful methods for computing with representations of the Lie group. Their application to construction of bases in representation spaces is considered in detail. It represents a completely new direction to the problem
    corecore