32 research outputs found

    Gettysburg College Sustainability Proposal

    Full text link
    In the fall of 2011, the Environmental Studies capstone class led by Professor Rutherford Platt was asked to write Gettysburg Collegeā€™s first Sustainability Plan. The goal of the plan was to develop specific sustainable practices for the campus that were related to the three pillars of sustainability: economic, social, and environmental, and how integrating diligent sustainable practices into each of these respected pillars will result in a more conscious campus, community, and future. In 2010, Gettysburg College turned to the Sustainability Tracking Assessment and Rating System (STARS) to quantify the institutionā€™s sustainability efforts, providing a self-check mechanism to encourage sustainability applications to all aspects of the College. The American College and University Presidentsā€™ Climate Commitment was signed in 2007 by former Gettysburg College President Katherine Haley Will, declaring that Gettysburg College would become carbon neutral by 2032. Gettysburg College has made large strides in the search for sustainability, and aims to continue its dedication to furthering sustainable practice. The following plan outlines the six priority areas identified by the Capstone class: progress of the American College and University Presidentsā€™ Climate Commitment, Dining Services, campus green space, community outreach, integration of sustainability into the Gettysburg College Curriculum, and the Sustainability Advisory Committee. The first priority area identified was monitoring and upholding the American College and University Presidentsā€™ Climate Commitment (ACUPCC). Though creating new sustainability initiatives on campus is the driving force towards an increasingly sustainable college and community, it is imperative that these goals be carried out in full to maximize beneficial returns. In order to reach carbon neutrality, Gettysburg College hopes to increase energy efficiency in buildings, incorporate renewable energy sources on campus, and mitigate remaining emissions through the purchase of carbon offsets. To further the Collegeā€™s progress, it is proposed that Gettysburg College continue its energy-efficient appliance purchasing policy, as well as create a policy to offset all greenhouse gas emissions generated by air travel for students study abroad. As stated by the ACUPCC, a Sustainability Committee should take responsibility for the updates and progress reports required to meet the goal of carbon neutrality. The second priority area identified was sustainability in Dining Services. Gettysburg College is home to 2,600 students, all of whom require three full meals a day. Dining Services accounts for a large fraction of Gettysburg Collegeā€™s sustainability efforts, already implementing sustainability through composting, buying local produce, and using biodegradable products. The proposed on-campus sales cuts of non-reusable to-go items, a change in campus mentality on food waste, and improved composting practices will translate to an increasingly sustainable campus, as well as a well-fed campus body. The third priority was maintaining green space on campus. Ranked as the 23rd most beautiful campus in the United States by The Best Colleges, Gettysburg College utilizes campus green space to create an atmosphere that is conducive to activity as well as tranquility. The plan proposes that Gettysburg College and its grounds facilities continue their exceptional efforts, focusing on increasing the use of the student garden, creating a new rain garden or social area on campus, and converting unnecessary parking lots into green space. As these additions are completed, they must be introduced to the student body and faculty alike to assure these areas are known and utilized. The fourth priority was utilizing community outreach to spread awareness of sustainability initiatives on and off campus. To connect the sustainability-geared changes proposed in this plan, community outreach at Gettysburg College is assessed to estimate how well these initiatives are communicated and promoted to both potential and enrolled students, faculty, and other concerned parties. To evaluate the efficiency of communication at Gettysburg College, a quantitative assessment is presented to measure the ease of finding the sustainability webpage, the quality of sustainability-related topics available on the webpage, and quality of webpage design. The webpage is in need of improved text to image ratios, locations of sustainability topics, and data displays. Despite not having a link to the sustainability webpage on the Gettysburg College homepage, sustainability events should be covered and presented on the rotational news feed found on the homepage to maximize outreach to interested parties or simply to add to the definition of Gettysburg College. The fifth priority was integrating sustainability into the Curriculum to build a culture on campus that values academic rigor, supports students as they cultivate intellectual and civic passions, and promotes the development of healthy social relationships and behaviors. The proposed Sustainability Committee on Sustainability in the Curriculum (SCC) will hold sustainability workshops for faculty with the aim to instill sustainability into all academic disciplines, providing all Gettysburg graduates with a means to approach their professional careers in a fashion that is conscious of sustainability. The sixth and last priority was the Sustainability Advisory Committee. Established in 2007, the Sustainability Advisory Committee is currently under review, but it is recommended that the committee restructure itself in accordance with the new Sustainability Committee Bylaws. These bylaws aim to define the purposes, membership, governance, and involvement with the college. With a clearly defined set of goals and methodology, the Sustainability Advisory Committee will be able to improve the solidarity of the sustainability movement on campus as a whole. By following the propositions laid out in the Gettysburg College Sustainability Plan, the student body, faculty, and community alike will become a part of a multi-faceted progression toward a more sustainable future

    Mcrs1 interacts with Six1 to influence early craniofacial and otic development

    No full text
    Ā© 2020 Elsevier Inc. The Six1 transcription factor plays a major role in craniofacial development. Mutations in SIX1 and its co-factor, EYA1, are causative for about 50% of Branchio-otic/Branchio-oto-renal syndrome (BOR) patients, who are characterized by variable craniofacial, otic and renal malformations. We previously screened for other proteins that might interact with Six1 to identify additional genes that may play a role in BOR, and herein characterize the developmental role of one of them, Microspherule protein 1 (Mcrs1). We found that in cultured cells, Mcrs1 bound to Six1 and in both cultured cells and embryonic ectoderm reduced Six1-Eya1 transcriptional activation. Knock-down of Mcrs1 in embryos caused an expansion of the domains of neural plate genes and two genes expressed in both the neural plate and neural crest (zic1, zic2). In contrast, two other genes expressed in pre-migratory neural crest (foxd3, sox9) were primarily reduced. Cranial placode genes showed a mixture of expanded and diminished expression domains. At larval stages, loss of Mcrs1 resulted in a significant reduction of otic vesicle gene expression concomitant with a smaller otic vesicle volume. Experimentally increasing Mcrs1 above endogenous levels favored the expansion of neural border and neural crest gene domains over cranial placode genes; it also reduced otic vesicle gene expression but not otic vesicle volume. Co-expression of Mcrs1 and Six1 as well as double knock-down and rescue experiments establish a functional interaction between Mcrs1 and Six1 in the embryo, and demonstrate that this interaction has an important role in the development of craniofacial tissues including the otic vesicle

    Awakening Canadians to ageism: a study protocol

    No full text
    Abstract Background Making fun of growing older is considered socially acceptable, yet ageist humour reinforces negative stereotypes that growing old is linked with physical and mental deterioration, dependence, and less social value. Such stereotypes and discrimination affect the wellbeing of older people, the largest demographic of Canadians. While ageism extends throughout professions and social institutions, we expect nursesā€”the largest and most trusted group of healthcare professionalsā€”to provide non-ageist care to older people. Unfortunately, nurses working with older people often embrace ageist beliefs and nursing education programs do not address sufficient anti-ageism content despite gerontological nursing standards and competencies. Methods To raise awareness of ageism in Canada, this quasi-experimental study will be supported by partnerships between older Canadians, advocacy organizations, and academic gerontological experts which will serve as an advisory group. The study, guided by social learning theory, will unfold in two parts. In Phase 1, we will use student nurses as a test case to determine if negative stereotypes and ageist perceptions can be addressed through three innovative e-learning activities. The activities employ gamification, videos, and simulations to: (1) provide accurate general information about older people, (2) model management of responsive behaviours in older people with cognitive impairment, and (3) dispel negative stereotypes about older people as dependent and incontinent. In Phase 2, the test case findings will be shared with the advisory group to develop a range of knowledge mobilization strategies to dispel ageism among healthcare professionals and the public. We will implement key short term strategies. Discussion Findings will generate knowledge on the effectiveness of the e-learning activities in improving student nursesā€™ perceptions about older people. The e-learning learning activities will help student nurses acquire much-needed gerontological knowledge and skills. The strength of this project is in its plan to engage a wide array of stakeholders who will mobilize the phase I findings and advocate for positive perspectives and accurate knowledge about agingā€”older Canadians, partner organizations (Canadian Gerontological Nurses Association, CanAge, AgeWell), and gerontological experts

    Immunogenicity of a novel Clade B HIV-1 vaccine combination: Results of phase 1 randomized placebo controlled trial of an HIV-1 GM-CSF-expressing DNA prime with a modified vaccinia Ankara vaccine boost in healthy HIV-1 uninfected adults

    No full text
    <div><p>Background</p><p>A phase 1 trial of a clade B HIV vaccine in HIV-uninfected adults evaluated the safety and immunogenicity of a DNA prime co-expressing GM-CSF (Dg) followed by different numbers and intervals of modified vaccinia Ankara Boosts (M). Both vaccines produce virus-like particles presenting membrane-bound Env.</p><p>Methods</p><p>Four US sites randomized 48 participants to receiving 1/10<sup>th</sup> the DNA dose as DgDgMMM given at 0, 2, 4, 6 and 8 months, or full dose DgDgM_M or DgDgMM_M regimens, given at 0, 2, 4, and 8 months, and 0, 2, 4, 6, and 10 months, respectively. Peak immunogenicity was measured 2 weeks post-last vaccination.</p><p>Results</p><p>All regimens were well tolerated and safe. Full dose DgDgM_M and DgDgMM_M regimens generated Env-specific IgG to HIV-1 Env in >90%, IgG3 in >80%, and IgA in <20% of participants. Responses to gp140 and gp41 targets were more common and of higher magnitude than to gp120 and V1V2. The gp41 antibody included reactivity to the conserved immunodominant region with specificities known to mediate virus capture and phagocytosis and did not cross-react with a panel of intestinal flora antigens. The 3<sup>rd</sup> dose of MVA increased the avidity of elicited antibody (7.5% to 39%), the ADCC response to Bal gp120 (14% to 64%), and the one-year durability of the IgG3 responses to gp41 by 4-fold (13% vs. 3.5% retention of peak response). The co-expressed GM-CSF did not enhance responses over those in trials testing this vaccine without GM-CSF.</p><p>Conclusion</p><p>This DNA/MVA prime-boost regimen induced durable, functional humoral responses that included ADCC, high antibody avidity, and Env IgG1 and IgG3 binding responses to the immunodominant region of gp41. The third, spaced MVA boost improved the overall quality of the antibody response. These products without co-expressed GM-CSF but combined with protein boosts will be considered for efficacy evaluation.</p><p>Trial registration</p><p>ClinicalTrials.gov <a href="https://clinicaltrials.gov/ct2/show/NCT01571960" target="_blank">NCT01571960</a></p></div

    Antibody avidity.

    No full text
    <p>Distribution of binding antibody avidity response magnitude among vaccine recipients at two weeks and 6 months after the 2nd and 3rd MVA in the DgDgM_M and DgDgMM_M groups. DgDgM_M refers to immune responses after the last MVA in the DgDgM_M group; DgDgMM and DgDgMM_M refer to immune responses after the 2nd and 3rd MVA in DgDgMM_M group, respectively. Avidity Index (AI) was calculated for the ID epitope tetramer for those with a positive binding response to the ID epitope tetramer and only for samples not saturated (MFI < 23000). Wilcoxon signed rank tests were used to compare AI values among positive responders.</p

    Summary immune responses.

    No full text
    <p>Overall peak binding antibody and ICS response rates among vaccine recipients at two weeks after the 2nd and 3rd MVA in the DgDgM_M and DgDgMM_M groups. DgDgM_M refers to immune responses after the last MVA in the DgDgM_M group; DgDgMM and DgDgMM_M refer to immune responses after the 2nd and 3rd MVA in DgDgMM_M group, respectively. A positive response to IgG Env or IgA Env indicates positive responses to at least one ENV antigens measured by the BAMA binding antibody assay; a positive response to ANY CD4+ or ANY CD8+ indicates positive responses to any least one peptide pool and/or cytokine measured by the ICS assay.</p

    CONSORT flow diagram.

    No full text
    <p>Allocation, follow-up, and analysis for HIV Vaccine Trials Network (HVTN) study 094. Abbreviations: 1/10 DgDgMMM, treatment arm receiving two 1/10 doses of DNA followed by three doses of MVA at 0, 2, 4, 6 and 8 months; DgDgMM_M, treatment arm receiving two full doses of DNA followed by three doses of MVA given at 0, 2, 4, 6, and 10 months; DgDgM_M, treatment arm receiving two full doses of DNA followed by two doses of MVA at 0, 2, 4, and 8 months; ADCC, antibody dependent cellular cytotoxicity.</p

    Cellular immune responses measured by intracellular cytokine staining (ICS).

    No full text
    <p>(A) CD4+ response rates. (B) CD4+ response magnitude. (C) CD8+ response rate. (D) CD8+ response magnitudes. Peak ICS response rates and response magnitude to Gag, Env and Pol in the CD4+ (Panels A & B) and CD8+ (Panels C & D) T-cell subsets at two weeks after the 2nd and 3rd MVA or placebo in the Placebo, DgDgM_M and DgDgMM_M groups. DgDgM_M refers to immune responses after the last MVA in the DgDgM_M group; DgDgMM and DgDgMM_M refer to immune responses after the 2nd and 3rd MVA in DgDgMM_M group, respectively. Shown are response rates (A, C) and response magnitudes (B, D) for the sum of individual antigen responses, reported as % of CD4+ or CD8+ T cells producing IFN-gamma and/or IL-2. Positive responses are shown as filled circles and negative responses are shown as open circles (B, D). Box-plots represent the distribution for the positive responders only. Response rates were compared using Fisherā€™s exact test (A, C); response magnitudes among responders across treatment arms were compared using Wilcoxon Rank Sum test (B, D).</p
    corecore