123 research outputs found

    Progress and prospects in the quantum anomalous Hall effect

    Full text link
    The quantum anomalous Hall effect refers to the quantization of Hall effect in the absence of applied magnetic field. The quantum anomalous Hall effect is of topological nature and well suited for field-free resistance metrology and low-power information processing utilizing dissipationless chiral edge transport. In this Perspective, we provide an overview of the recent achievements as well as the materials challenges and opportunities, pertaining to engineering intrinsic/interfacial magnetic coupling, that are expected to propel future development of the field.Comment: Invited for APL Materials, Special Topic - Materials Challenges and Synthesis Science of Emerging Quantum Material

    Spin-filtered Edge States with an Electrically Tunable Gap in a Two-Dimensional Topological Crystalline Insulator

    Get PDF
    Three-dimensional topological crystalline insulators were recently predicted and observed in the SnTe class of IV-VI semiconductors, which host metallic surface states protected by crystal symmetries. In this work, we study thin films of these materials and expose their potential for device applications. We demonstrate that thin films of SnTe and Pb(1-x)Sn(x)Se(Te) grown along the (001) direction are topologically nontrivial in a wide range of film thickness and carry conducting spin-filtered edge states that are protected by the (001) mirror symmetry via a topological invariant. Application of an electric field perpendicular to the film will break the mirror symmetry and generate a band gap in these edge states. This functionality motivates us to propose a novel topological transistor device, in which charge and spin transport are maximally entangled and simultaneously controlled by an electric field. The high on/off operation speed and coupling of spin and charge in such a device may lead to electronic and spintronic applications for topological crystalline insulators.Comment: 6 pages, 5 figures, minor changes made, accepted to Nature Material

    Independent tuning of electronic properties and induced ferromagnetism in topological insulators with heterostructure approach

    Full text link
    The quantum anomalous Hall effect (QAHE) has been recently demonstrated in Cr- and V-doped three-dimensional topological insulators (TIs) at temperatures below 100 mK. In those materials, the spins of unfilled d-electrons in the transition metal dopants are exchange coupled to develop a long-range ferromagnetic order, which is essential for realizing QAHE. However, the addition of random dopants does not only introduce excess charge carriers that require readjusting the Bi/Sb ratio, but also unavoidably introduces paramagnetic spins that can adversely affect the chiral edge transport in QAHE. In this work, we show a heterostructure approach to independently tune the electronic and magnetic properties of the topological surface states in (BixSb1-x)2Te3 without resorting to random doping of transition metal elements. In heterostructures consisting of a thin (BixSb1-x)2Te3 TI film and yttrium iron garnet (YIG), a high Curie temperature (~ 550 K) magnetic insulator, we find that the TI surface in contact with YIG becomes ferromagnetic via proximity coupling which is revealed by the anomalous Hall effect (AHE). The Curie temperature of the magnetized TI surface ranges from 20 to 150 K but is uncorrelated with the Bi fraction x in (BixSb1-x)2Te3. In contrast, as x is varied, the AHE resistivity scales with the longitudinal resistivity. In this approach, we decouple the electronic properties from the induced ferromagnetism in TI. The independent optimization provides a pathway for realizing QAHE at higher temperatures, which is important for novel spintronic device applications.Comment: Accepted by Nano Letter

    Absence of Magnetic Fluctuations in the Ferromagnetic/Topological Heterostructure EuS/Bi2_{2}Se3_{3}

    Full text link
    Heterostructures of topological insulators and ferromagnets offer new opportunities in spintronics and a route to novel anomalous Hall states. In one such structure, EuS/Bi2_{2}Se3_{3} a dramatic enhancement of the Curie temperature was recently observed. We performed Raman spectroscopy on a similar set of thin films to investigate the magnetic and lattice excitations. Interfacial strain was monitored through its effects on the Bi2_{2}Se3_{3} phonon modes while the magnetic system was probed through the EuS Raman mode. Despite its appearance in bare EuS, the heterostructures lack the corresponding EuS Raman signal. Through numerical calculations we rule out the possibility of Fabry-Perot interference suppressing the mode. We attribute the absence of a magnetic signal in EuS to a large charge transfer with the Bi2_{2}Se3_{3}. This could provide an additional pathway for manipulating the magnetic, optical, or electronic response of topological heterostructures.Comment: 6 pages, 3 figure

    Spatially modulated magnetic structure of EuS due to the tetragonal domain structure of SrTiO3_3

    Get PDF
    The combination of ferromagnets with topological superconductors or insulators allows for new phases of matter that support excitations such as chiral edge modes and Majorana fermions. EuS, a wide-band-gap ferromagnetic insulator with a Curie temperature around 16 K, and SrTiO3_3 (STO), an important substrate for engineering heterostructures, may support these phases. We present scanning superconducting quantum interference device (SQUID) measurements of EuS grown epitaxially on STO that reveal micron-scale variations in ferromagnetism and paramagnetism. These variations are oriented along the STO crystal axes and only change their configuration upon thermal cycling above the STO cubic-to-tetragonal structural transition temperature at 105 K, indicating that the observed magnetic features are due to coupling between EuS and the STO tetragonal structure. We speculate that the STO tetragonal distortions may strain the EuS, altering the magnetic anisotropy on a micron-scale. This result demonstrates that local variation in the induced magnetic order from EuS grown on STO needs to be considered when engineering new phases of matter that require spatially homogeneous exchange

    Magnetic Proximity Effect and Interlayer Exchange Coupling of Ferromagnetic/Topological Insulator/Ferromagnetic Trilayer

    Get PDF
    Magnetic proximity effect between topological insulator (TI) and ferromagnetic insulator (FMI) is considered to have great potential in spintronics. However, a complete determination of interfacial magnetic structure has been highly challenging. We theoretically investigate the interlayer exchange coupling of two FMIs separated by a TI thin film, and show that the particular electronic states of the TI contributing to the proximity effect can be directly identified through the coupling behavior between two FMIs, together with a tunability of coupling constant. Such FMI/TI/FMI structure not only serves as a platform to clarify the magnetic structure of FMI/TI interface, but also provides insights into designing the magnetic storage devices with ultrafast response.Comment: 7 pages, 4 figure

    Unconventional Planar Hall Effect in Exchange-Coupled Topological Insulator-Ferromagnetic Insulator Heterostructures

    Full text link
    The Dirac electrons occupying the surface states (SSs) of topological insulators (TIs) have been predicted to exhibit many exciting magneto-transport phenomena. Here we report on the first experimental observation of an unconventional planar Hall effect (PHE) and an electrically gate-tunable hysteretic planar magnetoresistance (PMR) in EuS/TI heterostructures, in which EuS is a ferromagnetic insulator (FMI) with an in-plane magnetization. In such exchange-coupled FMI/TI heterostructures, we find a significant (suppressed) PHE when the in-plane magnetic field is parallel (perpendicular) to the electric current. This behavior differs from previous observations of the PHE in ferromagnets and semiconductors. Furthermore, as the thickness of the 3D TI films is reduced into the 2D limit, in which the Dirac SSs develop a hybridization gap, we find a suppression of the PHE around the charge neutral point indicating the vital role of Dirac SSs in this phenomenon. To explain our findings, we outline a symmetry argument that excludes linear-Hall mechanisms and suggest two possible non-linear Hall mechanisms that can account for all the essential qualitative features in our observations.Comment: 17 pages, 4 figures, accepted by Phys. Rev.
    corecore