1,787 research outputs found

    Estudio del efecto solvatocrómico en derivados fenólicos naturales

    Get PDF
    Se describen las características espectrofluorimétricas de dos derivados de quercetina aislados de las hojas deFlaveria bidentis, un derivado de 6-prenilpinocembrina, aislado de las raíces de Dalea elegans y un compuesto deestructura antraquinónica aislado de las hojas de Heterophyllaea pustulata. Todos ellos presentan espectros deabsorción con máximos en la región UV-visible acordes con los grupos cromóforos presentes en su estructura. Loscuatro compuestos estudiados presentan fluorescencia nativa. La posición de los máximos de emisión de fluorescenciase modifica en función del disolvente. Los desplazamientos producidos están relacionados con el diferente gradode solvatación de las moléculas en estado excitado según la polaridad del disolvente. La adición de ácidos mineralesprovoca desplazamientos en los máximos de fluorescencia concordantes con los ya descritos para compuestos deestructura similar. Estas modificaciones espectrales tienen un gran interés analítico desde el punto de vista de laidentificación y caracterización de productos naturales de estructura fenólica

    Counsellee’s experience of cancer genetic counselling with pedigrees that automatically incorporate genealogical and cancer database information

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files. This article is open access.While pedigree drawing software is often utilised in genetic services, the use of genealogical databases in genetic counselling is unusual. This is mainly because of the unavailability of such databases in most countries. Electronically generated pedigrees used for cancer genetic counselling in Iceland create pedigrees that automatically incorporate information from a large, comprehensive genealogy database and nation-wide cancer registry. The aim of this descriptive qualitative study was to explore counsellees' experiences of genetic services, including family history taking, using these electronically generated pedigrees. Four online focus groups with 19 participants were formed, using an asynchronous posting method. Participants were encouraged to discuss their responses to questions posted on the website by the researcher. The main themes arising were motivation, information and trust, impact of testing and emotional responses. Most of the participants expressed trust in the method of using electronically generated pedigrees, although some voiced worries about information safety. Many experienced worry and anxiety while waiting for results of genetic testing, but limited survival guilt was noted. Family communication was either unchanged or improved following genetic counselling. The use of electronically generated pedigrees was well received by participants, and they trusted the information obtained via the databases. Age did not seem to influence responses. These results may be indicative of the particular culture in Iceland, where genealogical information is well known and freely shared. Further studies are needed to determine whether use of similar approaches to genealogical information gathering may be acceptable elsewhere

    Microcrystalline Tyrosine (MCT®): A Depot Adjuvant in Licensed Allergy Immunotherapy Offers New Opportunities in Malaria

    Get PDF
    Microcrystalline Tyrosine (MCT®) is a widely used proprietary depot excipient in specific immunotherapy for allergy. In the current study we assessed the potential of MCT to serve as an adjuvant in the development of a vaccine against malaria. To this end, we formulated the circumsporozoite protein (CSP) of P. vivax in MCT and compared the induced immune responses to CSP formulated in PBS or Alum. Both MCT and Alum strongly increased immunogenicity of CSP compared to PBS in both C57BL/6 and BALB/c mice. Challenge studies in mice using a chimeric P. bergei expressing CSP of P. vivax demonstrated clinically improved symptoms of malaria with CSP formulated in both MCT and Alum; protection was, however, more pronounced if CSP was formulated in MCT. Hence, MCT may be an attractive biodegradable adjuvant useful for the development of novel prophylactic vaccines

    Increased incidence of traffic accidents in Toxoplasma-infected military drivers and protective effect RhD molecule revealed by a large-scale prospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Latent toxoplasmosis, protozoan parasitosis with prevalence rates from 20 to 60% in most populations, is known to impair reaction times in infected subjects, which results, for example, in a higher risk of traffic accidents in subjects with this life-long infection. Two recent studies have reported that RhD-positive subjects, especially RhD heterozygotes, are protected against latent toxoplasmosis-induced impairment of reaction times. In the present study we searched for increased incidence of traffic accidents and for protective effect of RhD positivity in 3890 military drivers.</p> <p>Methods</p> <p>Male draftees who attended the Central Military Hospital in Prague for regular entrance psychological examinations between 2000 and 2003 were tested for <it>Toxoplasma </it>infection and RhD phenotype at the beginning of their 1 to1.5-year compulsory military service. Subsequently, the data on <it>Toxoplasma </it>infection and RhD phenotype were matched with those on traffic accidents from military police records and the effects of RhD phenotype and <it>Toxoplasma </it>infection on probability of traffic accident was estimated with logistic regression.</p> <p>Results</p> <p>We confirmed, using for the first time a prospective cohort study design, increased risk of traffic accidents in <it>Toxoplasma</it>-infected subjects and demonstrated a strong protective effect of RhD positivity against the risk of traffic accidents posed by latent toxoplasmosis. Our results show that RhD-negative subjects with high titers of anti-<it>Toxoplasma </it>antibodies had a probability of a traffic accident of about 16.7%, i.e. a more than six times higher rate than <it>Toxoplasma</it>-free or RhD-positive subjects.</p> <p>Conclusion</p> <p>Our results showed that a common infection by <it>Toxoplasma gondii </it>could have strong impact on the probability of traffic accident in RhD negative subjects. The observed effects could provide not only a clue to the long-standing evolutionary enigma of the origin of RhD polymorphism in humans (the effect of balancing selection), but might also be the missing piece in the puzzle of the physiological function of the RhD molecule.</p

    A systematic molecular and pharmacologic evaluation of AKT inhibitors reveals new insight into their biological activity.

    Get PDF
    Background AKT, a critical effector of the phosphoinositide 3-kinase (PI3K) signalling cascade, is an intensely pursued therapeutic target in oncology. Two distinct classes of AKT inhibitors have been in clinical development, ATP-competitive and allosteric. Class-specific differences in drug activity are likely the result of differential structural and conformational requirements governing efficient target binding, which ultimately determine isoform-specific potency, selectivity profiles and activity against clinically relevant AKT mutant variants.Methods We have carried out a systematic evaluation of clinical AKT inhibitors using in vitro pharmacology, molecular profiling and biochemical assays together with structural modelling to better understand the context of drug-specific and drug-class-specific cell-killing activity.Results Our data demonstrate clear differences between ATP-competitive and allosteric AKT inhibitors, including differential effects on non-catalytic activity as measured by a novel functional readout. Surprisingly, we found that some mutations can cause drug resistance in an isoform-selective manner despite high structural conservation across AKT isoforms. Finally, we have derived drug-class-specific phosphoproteomic signatures and used them to identify effective drug combinations.Conclusions These findings illustrate the utility of individual AKT inhibitors, both as drugs and as chemical probes, and the benefit of AKT inhibitor pharmacological diversity in providing a repertoire of context-specific therapeutic options

    Measurement of the t(t)over-bar production cross section in the dilepton channel in pp collisions at √s=8 TeV

    Get PDF
    The top-antitop quark (t (t) over bar) production cross section is measured in proton-proton collisions at root s = 8 TeV with the CMS experiment at the LHC, using a data sample corresponding to an integrated luminosity of 5.3 fb(-1). The measurement is performed by analysing events with a pair of electrons or muons, or one electron and one muon, and at least two jets, one of which is identified as originating from hadronisation of a bottom quark. The measured cross section is 239 +/- 2 (stat.) +/- 11 (syst.) +/- 6 (lum.) pb, for an assumed top-quark mass of 172.5 GeV, in agreement with the prediction of the standard model

    6-Sulphated Chondroitins Have a Positive Influence on Axonal Regeneration

    Get PDF
    Chondroitin sulphate proteoglycans (CSPGs) upregulated in the glial scar inhibit axon regeneration via their sulphated glycosaminoglycans (GAGs). Chondroitin 6-sulphotransferase-1 (C6ST-1) is upregulated after injury leading to an increase in 6-sulphated GAG. In this study, we ask if this increase in 6-sulphated GAG is responsible for the increased inhibition within the glial scar, or whether it represents a partial reversion to the permissive embryonic state dominated by 6-sulphated glycosaminoglycans (GAGs). Using C6ST-1 knockout mice (KO), we studied post-injury changes in chondroitin sulphotransferase (CSST) expression and the effect of chondroitin 6-sulphates on both central and peripheral axon regeneration. After CNS injury, wild-type animals (WT) showed an increase in mRNA for C6ST-1, C6ST-2 and C4ST-1, but KO did not upregulate any CSSTs. After PNS injury, while WT upregulated C6ST-1, KO showed an upregulation of C6ST-2. We examined regeneration of nigrostriatal axons, which demonstrate mild spontaneous axon regeneration in the WT. KO showed many fewer regenerating axons and more axonal retraction than WT. However, in the PNS, repair of the median and ulnar nerves led to similar and normal levels of axon regeneration in both WT and KO. Functional tests on plasticity after the repair also showed no evidence of enhanced plasticity in the KO. Our results suggest that the upregulation of 6-sulphated GAG after injury makes the extracellular matrix more permissive for axon regeneration, and that the balance of different CSs in the microenvironment around the lesion site is an important factor in determining the outcome of nervous system injury

    Modeling Core Metabolism in Cancer Cells: Surveying the Topology Underlying the Warburg Effect

    Get PDF
    BACKGROUND: Alterations on glucose consumption and biosynthetic activity of amino acids, lipids and nucleotides are metabolic changes for sustaining cell proliferation in cancer cells. Irrevocable evidence of this fact is the Warburg effect which establishes that cancer cells prefers glycolysis over oxidative phosphorylation to generate ATP. Regulatory action over metabolic enzymes has opened a new window for designing more effective anti-cancer treatments. This enterprise is not trivial and the development of computational models that contribute to identifying potential enzymes for breaking the robustness of cancer cells is a priority. METHODOLOGY/PRINCIPAL FINDINGS: This work presents a constraint-base modeling of the most experimentally studied metabolic pathways supporting cancer cells: glycolysis, TCA cycle, pentose phosphate, glutaminolysis and oxidative phosphorylation. To evaluate its predictive capacities, a growth kinetics study for Hela cell lines was accomplished and qualitatively compared with in silico predictions. Furthermore, based on pure computational criteria, we concluded that a set of enzymes (such as lactate dehydrogenase and pyruvate dehydrogenase) perform a pivotal role in cancer cell growth, findings supported by an experimental counterpart. CONCLUSIONS/SIGNIFICANCE: Alterations on metabolic activity are crucial to initiate and sustain cancer phenotype. In this work, we analyzed the phenotype capacities emerged from a constructed metabolic network conformed by the most experimentally studied pathways sustaining cancer cell growth. Remarkably, in silico model was able to resemble the physiological conditions in cancer cells and successfully identified some enzymes currently studied by its therapeutic effect. Overall, we supplied evidence that constraint-based modeling constitutes a promising computational platform to: 1) integrate high throughput technology and establish a crosstalk between experimental validation and in silico prediction in cancer cell phenotype; 2) explore the fundamental metabolic mechanism that confers robustness in cancer; and 3) suggest new metabolic targets for anticancer treatments. All these issues being central to explore cancer cell metabolism from a systems biology perspective
    corecore