13,034 research outputs found
Symmetry Reduction of Optimal Control Systems and Principal Connections
This paper explores the role of symmetries and reduction in nonlinear control
and optimal control systems. The focus of the paper is to give a geometric
framework of symmetry reduction of optimal control systems as well as to show
how to obtain explicit expressions of the reduced system by exploiting the
geometry. In particular, we show how to obtain a principal connection to be
used in the reduction for various choices of symmetry groups, as opposed to
assuming such a principal connection is given or choosing a particular symmetry
group to simplify the setting. Our result synthesizes some previous works on
symmetry reduction of nonlinear control and optimal control systems. Affine and
kinematic optimal control systems are of particular interest: We explicitly
work out the details for such systems and also show a few examples of symmetry
reduction of kinematic optimal control problems.Comment: 23 pages, 2 figure
High sensitivity operation of discrete solid state detectors at 4 K
Techniques are described to allow operation of discrete, solid state detectors at 4 K with optimized JFET amplifiers. Three detector types cover the 0.6 to 4 mm spectral range with NEP approximately equal to 10 to the 16th power Hz (-1/2) for two of the types and potential improvement to this performance for the third. Lower NEP's are anticipated at longer infrared wavelengths
Hyperk\"ahler Arnold Conjecture and its Generalizations
We generalize and refine the hyperk\"ahler Arnold conjecture, which was
originally established, in the non-degenerate case, for three-dimensional time
by Hohloch, Noetzel and Salamon by means of hyperk\"ahler Floer theory. In
particular, we prove the conjecture in the case where the time manifold is a
multidimensional torus and also establish the degenerate version of the
conjecture. Our method relies on Morse theory for generating functions and a
finite-dimensional reduction along the lines of the Conley-Zehnder proof of the
Arnold conjecture for the torus.Comment: 13 page
The Cartan form for constrained Lagrangian systems and the nonholonomic Noether theorem
This paper deals with conservation laws for mechanical systems with
nonholonomic constraints. It uses a Lagrangian formulation of nonholonomic
systems and a Cartan form approach. We present what we believe to be the most
general relations between symmetries and first integrals. We discuss the
so-called nonholonomic Noether theorem in terms of our formalism, and we give
applications to Riemannian submanifolds, to Lagrangians of mechanical type, and
to the determination of quadratic first integrals.Comment: 25 page
Velocity field distributions due to ideal line vortices
We evaluate numerically the velocity field distributions produced by a
bounded, two-dimensional fluid model consisting of a collection of parallel
ideal line vortices. We sample at many spatial points inside a rigid circular
boundary. We focus on ``nearest neighbor'' contributions that result from
vortices that fall (randomly) very close to the spatial points where the
velocity is being sampled. We confirm that these events lead to a non-Gaussian
high-velocity ``tail'' on an otherwise Gaussian distribution function for the
Eulerian velocity field. We also investigate the behavior of distributions that
do not have equilibrium mean-field probability distributions that are uniform
inside the circle, but instead correspond to both higher and lower mean-field
energies than those associated with the uniform vorticity distribution. We find
substantial differences between these and the uniform case.Comment: 21 pages, 9 figures. To be published in Physical Review E
(http://pre.aps.org/) in May 200
Overcoming the su(2^n) sufficient condition for the coherent control of n-qubit systems
We study quantum systems with even numbers N of levels that are completely
state-controlled by unitary transformations generated by Lie algebras
isomorphic to sp(N) of dimension N(N+1)/2. These Lie algebras are smaller than
the respective su(N) with dimension N^2-1. We show that this reduction
constrains the Hamiltonian to have symmetric energy levels. An example of such
a system is an n-qubit system. Using a geometric representation for the quantum
wave function of a finite system, we present an explicit example that shows a
two-qubit system can be controlled by the elements of the Lie algebra sp(4)
(isomorphic to spin(5) and so(5)) with dimension ten rather than su(4) with
dimension fifteen. These results enable one to envision more efficient
algorithms for the design of fields for quantum-state engineering, and they
provide more insight into the fundamental structure of quantum control.Comment: 13 pp., 2 figure
Freezing Transition, Characteristic Polynomials of Random Matrices, and the Riemann Zeta-Function
We argue that the freezing transition scenario, previously explored in the
statistical mechanics of 1/f-noise random energy models, also determines the
value distribution of the maximum of the modulus of the characteristic
polynomials of large N x N random unitary (CUE) matrices. We postulate that our
results extend to the extreme values taken by the Riemann zeta-function zeta(s)
over sections of the critical line s=1/2+it of constant length and present the
results of numerical computations in support. Our main purpose is to draw
attention to possible connections between the statistical mechanics of random
energy landscapes, random matrix theory, and the theory of the Riemann zeta
function.Comment: published version with a few misprints corrected and references adde
- …