20 research outputs found

    Pharmacologically active microcarriers influence VEGF-A effects on mesenchymal stem cell survival

    Get PDF
    Resistance of transplanted mesenchymal stem cells (MSCs) in post-ischemic heart is limited by their poor vitality. Vascular-endothelial-growth-factor-A (VEGF-A) as such or slowly released by fibronectin-coated pharmacologically-active-microcarriers (FN-PAM-VEGF) could differently affect survival kinases and anti-apoptotic mediator (e.g. Bcl-2). Therefore VEGF-A or FN-PAM-VEGF could differently enhance cell proliferation, and/or resistance to hypoxia/reoxygenation (H/R) of MSCs. To test these hypotheses MSCs were incubated for 6-days with VEGF-A alone or with FN-PAM-VEGF. In addition, MSCs pre-treated for 24-hrs with VEGF-A or FN-PAM-VEGF were subsequently exposed to H/R (72-hrs 3% O(2) and 3-hrs of reoxygenation). Cell-proliferation and post-hypoxic vitality were determined. Kinases were studied at 30-min., 1- and 3-days of treatment. Cell-proliferation increased about twofold (P < 0.01) 6-days after VEGF-A treatment, but by a lesser extent (55% increase) with FN-PAM-VEGF (P < 0.05). While MSC pre-treatment with VEGF-A confirmed cell-proliferation, pre-treatment with FN-PAM-VEGF protected MSCs against H/R. In the early phase of treatments, VEGF-A increased phospho-Akt, phospho-ERK-1/2 and phospho-PKCε compared to the untreated cells or FN-PAM-VEGF. Afterword, kinase phosphorylations were higher with VGEF, except for ERK-1/2, which was similarly increased by both treatments at 3 days. Only FN-PAM-VEGF significantly increased Bcl-2 levels. After H/R, lactate dehydrogenase release and cleaved Caspase-3 levels were mainly reduced by FN-PAM-VEGF. While VEGF-A enhances MSC proliferation in normoxia, FN-PAM-VEGF mainly hampers post-hypoxic MSC death. These different effects underscore the necessity of approaches suited to the various conditions. The use of FN-PAM-VEGF could be considered as a novel approach for enhancing MSC survival and regeneration in hostile environment of post-ischemic tissues

    Survival, differentiation, and neuroprotective mechanisms of human stem cells complexed with neurotrophin-3-releasing pharmacologically active microcarriers in an ex vivo model of parkinson’s disease

    Get PDF
    © AlphaMed Press 2015. Stem cell-based regenerative therapies hold great potential for the treatment of degenerative disorders such as Parkinson’s disease (PD). We recently reported the repair and functional recovery after treatment with human marrow-isolated adult multilineage inducible (MIAMI) cells adhered to neurotrophin-3 (NT3) releasing pharmacologically active microcarriers (PAMs) in hemiparkinsonian rats. In order to comprehend this effect, the goal of the present work was to elucidate the survival, differentiation, and neuroprotective mechanisms of MIAMI cells and human neural stem cells (NSCs), both adhering to NT3-releasing PAMs in an ex vivo organotypic model of nigrostriatal degeneration made from brain sagittal slices. It was shown that PAMs led to a marked increase in MIAMI cell survival and neuronal differentiation when releasing NT3. A significant neuroprotective effect of MIAMI cells adhering to PAMs was also demonstrated. NSCs barely had a neuroprotective effect and differentiated mostly into dopaminergic neuronal cells when adhering to PAM-NT3. Moreover, those cells were able to release dopamine in a sufficient amount to induce a return to baseline levels. Reverse transcription-quantitative polymerase chain reaction and enzyme-linked immunosorbent assay analyses identified vascular endothelial growth factor (VEGF) and stanniocalcin-1 as potential mediators of the neuroprotective effect of MIAMI cells and NSCs, respectively. It was also shown that VEGF locally stimulated tissue vascularization, which might improve graft survival, without excluding a direct neuroprotective effect of VEGF on dopaminergic neurons. These results indicate a prospective interest of human NSC/PAM and MIAMI cell/PAM complexes in tissue engineering for PD.Spanish Ministry of Economy and Competitiveness (Grant SAF2010-17167), a grant from the Comunidad de Madrid (Grant S2011-BMD-2336), and Instituto de Salud Carlos III (Redes Tematicas de Investigacion Cooperativa en Salud RD12/0019/0013) to A.M.S.Peer Reviewe

    Transplantation of adipose tissue mesenchymal cells conjugated with VEGF-releasing microcarriers promotes repair in murine myocardial infarction

    Get PDF
    RATIONALE: Engraftment and survival of transplanted stem or stromal cells in the microenvironment of host tissues may be improved by combining such cells with scaffolds to delay apoptosis and enhance regenerative properties. OBJECTIVES: We examined whether poly(lactic-co-glycolic acid) (PLGA) pharmacologically active microcarriers (PAMs) releasing vascular endothelial growth factor (VEGF) enhance survival, differentiation and angiogenesis of adipose tissue-mesenchymal stromal cells (AT-MSCs). We analyzed the efficacy of transplanted AT-MSCs conjugated with PAMs in a murine model of acute myocardial infarction (AMI). METHODS: We used fibronectin-coated (empty) PAMs or VEGF-releasing PAMs covered with murine AT-MSCs. Twelve month-old C57 mice underwent coronary artery ligation (Lig) to induce AMI, and were randomized into 5 treatment groups: AMI control (saline 20 microL, n=7), AMI followed by intramyocardial injection with AT-MSCs (2.5x105 cells/20 microL, n=5), or concentrated medium from AT-MSCs (CM, 20 microL, n=8), or AT-MSCs (2.5x105 cells/20 microL) conjugated with empty PAMs (n=7), or VEGF-releasing PAMs (n=8). Sham-operated mice (n=7) were used as controls. RESULTS: VEGF-releasing PAMs increased proliferation and angiogenic potential of AT-MSCs, but did not impact their osteogenic or adipogenic differentiation. AT-MSCs conjugated with VEGF-releasing PAMs inhibited apoptosis, decreased fibrosis, increased arteriogenesis and the number of cardiac-resident Ki-67 positive cells, and improved myocardial fractional shortening compared with AT-MSCs alone when transplanted into the infarcted hearts of C57 mice. With the exception of fractional shortening, all such effects of AT-MSCs conjugated with VEGF-PAMs were paralleled by the injection of CM. CONCLUSIONS: AT-MSCs conjugated with VEGF-releasing PAMs exert paracrine effects that may have therapeutic applications

    Effect of GDNF-releasing biodegradable microspheres on the function and the survival of intrastriatal fetal ventral mesencephalic cell grafts.

    No full text
    International audienceThe transplantation of fetal ventral mesencephalic (FVM) cell suspensions into the brain striatal system is an alternative approach for the treatment of Parkinson's disease (PD). However, one objection to this procedure is the relatively poor survival of implanted cells. Attempts have been made to improve the survival of grafted dopaminergic neurons using glial cell line-derived neurotrophic factor (GDNF). Nevertheless, the clinical application of GDNF is limited, due to the difficulties in administering a protein to the brain tissue and due to the ubiquity of its receptor, thus leading to neurological side effects. A strategy to deliver GDNF in the brain based on the intracerebral implantation of biodegradable poly(D,L-lactic acid-co-glycolic acid) sustained release microspheres has been developed. Such microparticles can be easily implanted by sterotaxy in precise and functional areas of the brain without causing damage to the surrounding tissue. Moreover, the release profile of the GDNF-loaded microspheres showed a sustained release over 56 days of biologically active GDNF at clinically relevant doses. The present study shows that the implantation of GDNF-loaded microspheres at a distance to the site of FVM cells in the 6-hydroxydopamine-lesioned rat model of PD improves dopaminergic graft survival and function. Furthermore, the unloaded and the GDNF-loaded microspheres, when they are mixed with FVM cells, may provide a mechanical support and a 3D environment inducing differentiation and increased function of dopaminergic neurons. Taken together, these results show that GDNF microspheres represent an efficient delivery system for cell transplantation studies

    A novel ex vivo Huntington’s disease model for studying GABAergic neurons and cell grafts by laser microdissection

    No full text
    International audienceOrganotypic brain slice cultures have been recently used to study neurodegenerative disorders such as Parkinson's disease and Huntington's disease (HD). They preserve brain three-dimensional architecture, synaptic connectivity and brain cells microenvironment. Here, we developed an innovative model of Huntington's disease from coronal rat brain slices, that include all the areas involved in the pathology. HD-like neurodegeneration was obtained in only one week, in a single step, during organotypic slice preparation, without the use of neurotoxins. HD-like histopathology was analysed and after one week, a reduction of 40% of medium spiny neurons was observed. To analyse new therapeutic approaches in this innovative HD model, we developed a novel protocol of laser microdissection to isolate and analyse by RT-qPCR, grafted cells as well as surrounding tissue of fresh organotypic slices. We determined that laser microdissection could be performed on a 400ÎĽm organoty-pic slice after alcohol dehydration protocol, allowing the analysis of mRNA expression in the rat tissue as well as in grafted cells. In conclusion, we developed a new approach for modeling Huntington's disease ex vivo, and provided a useful innovative method for screening new potential therapies for neurodegenerative diseases especially when associated with laser microdissection
    corecore