30 research outputs found

    <em>Blastococcus brunescens</em> sp. nov., a member of the <em>Geodermatophilaceae </em>isolated from sandstone collected from the Sahara Desert in Tunisia

    Get PDF
    \ua9 2024 The Authors.The taxonomic position of strain BMG 8361T, isolated from sandstone collected in the Sahara Desert of Southern Tunisia, was refined through a polyphasic taxonomic investigation. Colonies of BMG 8361T were pale-orange coloured, irregular with a dry surface and produced a diffusible pink or brown pigment depending on media. The Gram-positive cells were catalase-positive and oxidase-negative. The strain exhibited growth at 10–40\ub0C and pH values ranging from 5.5 to 9.0, with optima at 28–35\ub0C and pH 6.5–8.0. Additionally, BMG 8361T demonstrated the ability to grow in the presence of up to 1% NaCl (w/v) concentration. The peptidoglycan of the cell wall contained meso-diaminopimelic acid, glucose, galactose, xylose, ribose, and rhamnose. The predominant menaquinones consisted of MK-9(H4) and MK-9. The main polar lipids were phosphatidylcholine, phosphatidylinositol, glycophosphatidylinositol, diphosphatidylglycerol, phosphatidylethanolamine, and two unidentified lipids. Major cellular fatty acids were iso-C16:0, iso-C16:1 h, and C17:1 ω8c. Phylogenetic analyses based on both the 16S rRNA gene and whole-genome sequences assigned strain BMG 8361T within the genus Blastococcus. The highest pairwise sequence similarity observed in the 16S rRNA gene was 99.5% with Blastococcus haudaquaticus AT 7-14T. However, when considering digital DNA–DNA hybridization and average nucleotide identity, the highest values, 48.4 and 86.58%, respectively, were obtained with Blastococcus colisei BMG 822T. These values significantly undershoot the recommended thresholds for establishing new species, corroborating the robust support for the distinctive taxonomic status of strain BMG 8361T within the genus Blastococcus. In conjunction with the phenotyping results, this compelling evidence leads to the proposal of a novel species we named Blastococcus brunescens sp. nov. with BMG 8361T (=DSM 46845T=CECT 8880T) as the type strain

    Hunting for cultivable Micromonospora strains in soils of the Atacama Desert

    Get PDF
    Innovative procedures were used to selectively isolate small numbers of Micromonospora strains from extreme hyper-arid and high altitude Atacama Desert soils. Micromonosporae were recognised on isolation plates by their ability to produce filamentous microcolonies that were strongly attached to the agar. Most of the isolates formed characteristic orange colonies that lacked aerial hyphae and turned black on spore formation, whereas those from the high altitude soil were dry, blue-green and covered by white aerial hyphae. The isolates were assigned to seven multi- and eleven single-membered groups based on BOX-PCR profiles. Representatives of the groups were assigned to either multi-membered clades that also contained marker strains or formed distinct phyletic lines in the Micromonospora 16S rRNA gene tree; many of the isolates were considered to be putatively novel species of Micromonospora. Most of the isolates from the high altitude soils showed activity against wild type strains of Bacillus subtilis and Pseudomonas fluorescens while those from the rhizosphere of Parastrephia quadrangulares and from the Lomas Bayas hyper-arid soil showed resistance to UV radiation

    Stone-dwelling actinobacteria Blastococcus saxobsidens, Modestobacter marinus and Geodermatophilus obscurus proteogenomes

    No full text
    The Geodermatophilaceae are unique model systems to study the ability to thrive on or within stones and their proteogenomes (referring to the whole protein arsenal encoded by the genome) could provide important insight into their adaptation mechanisms. Here we report the detailed comparative genome analysis of Blastococcus saxobsidens (Bs), Modestobacter marinus (Mm) and Geodermatophilus obscurus (Go) isolated respectively from the interior and the surface of calcarenite stones and from desert sandy soils. The genome-scale analysis of Bs, Mm and Go illustrates how adaptation to these niches can be achieved through various strategies including ‘molecular tinkering/opportunism’ as shown by the high proportion of lost, duplicated or horizontally transferred genes and ORFans. Using high-throughput discovery proteomics, the three proteomes under unstressed conditions were analyzed, highlighting the most abundant biomarkers and the main protein factors. Proteomic data corroborated previously demonstrated stone-related ecological distribution. For instance, these data showed starvation-inducible, biofilm-related and DNA-protection proteins as signatures of the microbes associated with the interior, surface and outside of stones, respectively
    corecore