4,019 research outputs found

    Quantum interference oscillations of the superparamagnetic blocking in an Fe8 molecular nanomagnet

    Get PDF
    We show that the dynamic magnetic susceptibility and the superparamagnetic blocking temperature of an Fe8 single molecule magnet oscillate as a function of the magnetic field Hx applied along its hard magnetic axis. These oscillations are associated with quantum interferences, tuned by Hx, between different spin tunneling paths linking two excited magnetic states. The oscillation period is determined by the quantum mixing between the ground S=10 and excited multiplets. These experiments enable us to quantify such mixing. We find that the weight of excited multiplets in the magnetic ground state of Fe8 amounts to approximately 11.6%.Comment: Accepted in Phys. Rev. Let

    Aperture-free star formation rate of SDSS star-forming galaxies

    Full text link
    Large area surveys with a high number of galaxies observed have undoubtedly marked a milestone in the understanding of several properties of galaxies, such as star-formation history, morphology, and metallicity. However, in many cases, these surveys provide fluxes from fixed small apertures (e.g. fibre), which cover a scant fraction of the galaxy, compelling us to use aperture corrections to study the global properties of galaxies. In this work, we derive the current total star formation rate (SFR) of Sloan Digital Sky Survey (SDSS) star-forming galaxies, using an empirically based aperture correction of the measured Hα\rm H\alpha flux for the first time, thus minimising the uncertainties associated with reduced apertures. All the Hα\rm H\alpha fluxes have been extinction-corrected using the Hα/Hβ\rm H\alpha/H\beta ratio free from aperture effects. The total SFR for ∼\sim210,000 SDSS star-forming galaxies has been derived applying pure empirical Hα\rm H\alpha and Hα/Hβ\rm H\alpha/H\beta aperture corrections based on the Calar Alto Legacy Integral Field Area (CALIFA) survey. We find that, on average, the aperture-corrected SFR is ∼\sim0.65dex higher than the SDSS fibre-based SFR. The relation between the SFR and stellar mass for SDSS star-forming galaxies (SFR--M⋆\rm M_\star) has been obtained, together with its dependence on extinction and Hα\rm H\alpha equivalent width. We compare our results with those obtained in previous works and examine the behaviour of the derived SFR in six redshift bins, over the redshift range 0.005≤z≤0.22\rm 0.005 \leq z\leq 0.22. The SFR--M⋆\rm M_\star sequence derived here is in agreement with selected observational studies based on integral field spectroscopy of individual galaxies as well as with the predictions of recent theoretical models of disc galaxies

    Mixing Effects in the Crystallization of Supercooled Quantum Binary Liquids

    Get PDF
    By means of Raman spectroscopy of liquid microjets we have investigated the crystallization process of supercooled quantum liquid mixtures composed of parahydrogen (pH2_2) diluted with small amounts of up to 5\% of either neon or orthodeuterium (oD2_2), and of oD2_2 diluted with either Ne or pH2_2. We show that the introduction of Ne impurities affects the crystallization kinetics in both the pH2_2-Ne and oD2_2-Ne mixtures in terms of a significant reduction of the crystal growth rate, similarly to what found in our previous work on supercooled pH2_2-oD2_2 liquid mixtures [M. K\"uhnel et {\it al.}, Phys. Rev. B \textbf{89}, 180506(R) (2014)]. Our experimental results, in combination with path-integral simulations of the supercooled liquid mixtures, suggest in particular a correlation between the measured growth rates and the ratio of the effective particle sizes originating from quantum delocalization effects. We further show that the crystalline structure of the mixture is also affected to a large extent by the presence of the Ne impurities, which likely initiate the freezing process through the formation of Ne crystallites.Comment: 19 pages, 7 figures, submitted to J. Chem. Phy

    Convergence of Ginzburg-Landau functionals in 3-d superconductivity

    Full text link
    In this paper we consider the asymptotic behavior of the Ginzburg- Landau model for superconductivity in 3-d, in various energy regimes. We rigorously derive, through an analysis via {\Gamma}-convergence, a reduced model for the vortex density, and we deduce a curvature equation for the vortex lines. In a companion paper, we describe further applications to superconductivity and superfluidity, such as general expressions for the first critical magnetic field H_{c1}, and the critical angular velocity of rotating Bose-Einstein condensates.Comment: 45 page

    Large magnetic dipole moments for neutrinos with arbitrary masses

    Get PDF
    We show that there is a general sort of models in which it is possible to have large magnetic dipole moments for neutrinos while keeping their masses arbitrarily small. Some examples of these models are considered.Comment: REVTEX, 8 pages, 2 .eps figure

    Remark on the vectorlike nature of the electromagnetism and the electric charge quantization

    Full text link
    In this work we study the structure of the electromagnetic interactions and the electric charge quantization in gauge theories of electroweak interactions based on semi-simple groups. We show that in the standard model of the electroweak interactions the structure of the electromagnetic interactions is strongly correlated to the quantization pattern of the electric charges. We examine these two questions also in all possible chiral bilepton gauge models of the electroweak interactions. In all they we can explain the vectorlike nature of the electromagnetic interactions and the electric charge quantization together demanding nonvanishing fermion masses and the anomaly cancellations.Comment: 17 pages, latex, no figure

    DYNAMICAL SOLUTION OF A MODEL WITHOUT ENERGY BARRIERS

    Full text link
    In this note we study the dynamics of a model recently introduced by one of us, that displays glassy phenomena in absence of energy barriers. Using an adiabatic hypothesis we derive an equation for the evolution of the energy as a function of time that describes extremely well the glassy behaviour observed in Monte Carlo simulations.Comment: 11 pages, LaTeX, 3 uuencoded figure
    • …
    corecore