453 research outputs found

    A new method for the spectroscopic identification of stellar non-radial pulsation modes. II. Mode identification of the Delta Scuti star FG Virginis

    Get PDF
    We present a mode identification based on new high-resolution time-series spectra of the non-radially pulsating Delta Scuti star FG~Vir (HD 106384, V = 6.57, A5V). From 2002 February to June a global Delta Scuti Network (DSN) campaign, utilizing high-resolution spectroscopy and simultaneous photometry has been conducted for FG~Vir in order to provide a theoretical pulsation model. In this campaign we have acquired 969 Echelle spectra covering 147 hours at six observatories. The mode identification was carried out by analyzing line profile variations by means of the Fourier parameter fit method, where the observational Fourier parameters across the line are fitted with theoretical values. This method is especially well suited for determining the azimuthal order m of non-radial pulsation modes and thus complementary with the method of Daszynska-Daszkiewicz (2002) which does best at identifying the degree l. 15 frequencies between 9.2 and 33.5 c/d were detected spectroscopically. We determined the azimuthal order m of 12 modes and constrained their harmonic degree l. Only modes of low degree (l <= 4) were detected, most of them having axisymmetric character mainly due to the relatively low projected rotational velocity of FG Vir. The detected non-axisymmetric modes have azimuthal orders between -2 and 1. We derived an inclination of 19 degrees, which implies an equatorial rotational rate of 66 km/s.Comment: 14 pages, 26 figure

    Radiation in Lorentz violating electrodynamics

    Full text link
    Synchrotron radiation is analyzed in the classical effective Lorentz invariance violating model of Myers-Pospelov. Within the full far-field approximation we compute the electric and magnetic fields, the angular distribution of the power spectrum and the total emitted power in the m-th harmonic, as well as the polarization. We find the appearance of rather unexpected and large amplifying factors, which go together with the otherwise negligible naive expansion parameter. This opens up the possibility of further exploring Lorentz invariance violations by synchrotron radiation measurements in astrophysical sources where these amplifying factors are important.Comment: Presented at the Second Mexican Meeting on Theoretical and Experimental Physics, El Colegio Nacional, Mexico City, 6-10 September 200

    Perturbative Hamiltonian constraints for higher order theories

    Full text link
    We present a method for constructing a consistent low energy canonical formalism for higher order time-derivative theories, extending the Dirac method to include perturbative Hamiltonian constraints. We apply it to two paradigmatic examples: the Pais-Uhlenbeck oscillator and the Bernard-Duncan scalar field. We also compare the results, both at the classical and quantum level, with the ones corresponding to a direct perturbative construction applied to the exact higher order theory. This comparison highligths the soundness of the present formalism.Comment: 26 pages, 4 figures; review section shortened and appendices change

    Stochastic approach to inflation II: classicality, coarse-graining and noises

    Full text link
    In this work we generalize a previously developed semiclassical approach to inflation, devoted to the analysis of the effective dynamics of coarse-grained fields, which are essential to the stochastic approach to inflation. We consider general non-trivial momentum distributions when defining these fields. The use of smooth cutoffs in momentum space avoids highly singular quantum noise correlations and allows us to consider the whole quantum noise sector when analyzing the conditions for the validity of an effective classical dynamical description of the coarse-grained field. We show that the weighting of modes has physical consequences, and thus cannot be considered as a mere mathematical artifact. In particular we discuss the exponential inflationary scenario and show that colored noises appear with cutoff dependent amplitudes.Comment: 18 pages, revtex, no figure

    Fast pseudo-CT synthesis from MRI T1-weighted images using a patch-based approach

    Get PDF
    MRI-based bone segmentation is a challenging task because bone tissue and air both present low signal intensity on MR images, making it difficult to accurately delimit the bone boundaries. However, estimating bone from MRI images may allow decreasing patient ionization by removing the need of patient-specific CT acquisition in several applications. In this work, we propose a fast GPU-based pseudo-CT generation from a patient-specific MRI T1-weighted image using a group-wise patch-based approach and a limited MRI and CT atlas dictionary. For every voxel in the input MR image, we compute the similarity of the patch containing that voxel with the patches of all MR images in the database, which lie in a certain anatomical neighborhood. The pseudo-CT is obtained as a local weighted linear combination of the CT values of the corresponding patches. The algorithm was implemented in a GPU. The use of patch-based techniques allows a fast and accurate estimation of the pseudo-CT from MR T1-weighted images, with a similar accuracy as the patient-specific CT. The experimental normalized cross correlation reaches 0.9324±0.0048 for an atlas with 10 datasets. The high NCC values indicate how our method can accurately approximate the patient-specific CT. The GPU implementation led to a substantial decrease in computational time making the approach suitable for real applications

    Electrochemical study of hydrogen absorption in polycrystalline palladium

    Get PDF
    The hydrogen reactions on polycrystalline Pd in 0.1 M NaOH at 25°C have been studied by using transients at constant potential, and by impedance spectroscopy and X-ray diffraction techniques. At potentials, Es, more positive than the reversible potential, Er, for the H2 evolution reaction, the current-time response and the impedance data indicate H atom diffusion into the bulk Pd. The X-ray diffraction pattern of electrodes cathodized during 20 min at these potentials are similar to those obtained for Pd. At Es s moves in the negative direction. The Nyquist plot for the rising part of the transients indicates the H atom diffusion into the bulk metal and H2 evolution on the Pd surface at high frequencies. The X-ray diffraction pattern of the electrodes cathodized at Es r, shows the presence of the βPdH phase and Pd. The experimental results indicate that different reactions take place simultaneously in this potential range: (i) Hs evolution, (ii) H diffusion into the bulk Pd, (iii) nucleation and diffusion-controlled growth of the βPdH phase. Taking into account the contribution of these reactions, a model, which is able to reproduce the experimental current transients, is presented.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicada
    • …
    corecore