23 research outputs found

    Altering Murine Leukemia Virus Integration Through Disruption of the Integrase and BET Protein Family Interaction

    Full text link
    We report alterations to the murine leukemia virus (MLV) integrase (IN) protein that successfully result in decreasing its integration frequency at transcription start sites and CpG islands, thereby reducing the potential for insertional activation. The host bromo and extraterminal (BET) proteins Brd2, 3 and 4 interact with the MLV IN protein primarily through the BET protein ET domain. Using solution NMR, protein interaction studies, and next generation sequencing, we showthat the C-terminal tail peptide region ofMLV IN is important for the interaction with BET proteins and that disruption of this interaction through truncation mutations affects the global targeting profile of MLV vectors. The use of the unstructured tails of gammaretroviral INs to direct association with complexes at active promoters parallels that used by histones and RNA polymerase II. Viruses bearingMLV IN C-terminal truncations can provide new avenues to improve the safety profile of gammaretroviral vectors for human gene therapy

    Outcome of the First wwPDB/CCDC/D3R Ligand Validation Workshop.

    Get PDF
    Crystallographic studies of ligands bound to biological macromolecules (proteins and nucleic acids) represent an important source of information concerning drug-target interactions, providing atomic level insights into the physical chemistry of complex formation between macromolecules and ligands. Of the more than 115,000 entries extant in the Protein Data Bank (PDB) archive, ∼75% include at least one non-polymeric ligand. Ligand geometrical and stereochemical quality, the suitability of ligand models for in silico drug discovery and design, and the goodness-of-fit of ligand models to electron-density maps vary widely across the archive. We describe the proceedings and conclusions from the first Worldwide PDB/Cambridge Crystallographic Data Center/Drug Design Data Resource (wwPDB/CCDC/D3R) Ligand Validation Workshop held at the Research Collaboratory for Structural Bioinformatics at Rutgers University on July 30-31, 2015. Experts in protein crystallography from academe and industry came together with non-profit and for-profit software providers for crystallography and with experts in computational chemistry and data archiving to discuss and make recommendations on best practices, as framed by a series of questions central to structural studies of macromolecule-ligand complexes. What data concerning bound ligands should be archived in the PDB? How should the ligands be best represented? How should structural models of macromolecule-ligand complexes be validated? What supplementary information should accompany publications of structural studies of biological macromolecules? Consensus recommendations on best practices developed in response to each of these questions are provided, together with some details regarding implementation. Important issues addressed but not resolved at the workshop are also enumerated.The workshop was supported by funding to RCSB PDB by the National Science Foundation (DBI 1338415); PDBe by the Wellcome Trust (104948); PDBj by JST-NBDC; BMRB by the National Institute of General Medical Sciences (GM109046); D3R by the National Institute of General Medical Sciences (GM111528); registration fees from industrial participants; and tax-deductible donations to the wwPDB Foundation by the Genentech Foundation and the Bristol-Myers Squibb Foundation.This is the final version of the article. It first appeared from Cell Press via https://doi.org//10.1016/j.str.2016.02.01
    corecore