5,587 research outputs found
A large sample of calibration stars for Gaia: log g from Kepler and CoRoT
Asteroseismic data can be used to determine surface gravities with precisions
of < 0.05 dex by using the global seismic quantities Deltanu and nu_max along
with Teff and [Fe/H]. Surface gravity is also one of the four stellar
properties to be derived by automatic analyses for 1 billion stars from Gaia
data (workpackage GSP_Phot). We explore seismic data from MS F, G, K stars
(solar-like stars) observed by Kepler as a potential calibration source for
methods that Gaia will use for object characterisation (log g). We calculate
log g for bright nearby stars for which radii and masses are known, and using
their global seismic quantities in a grid-based method, we determine an
asteroseismic log g to within 0.01 dex of the direct calculation, thus
validating the accuracy of our method. We find that errors in Teff and mainly
[Fe/H] can cause systematic errors of 0.02 dex. We then apply our method to a
list of 40 stars to deliver precise values of surface gravity, i.e. sigma <
0.02 dex, and we find agreement with recent literature values. Finally, we
explore the precision we expect in a sample of 400+ Kepler stars which have
their global seismic quantities measured. We find a mean uncertainty
(precision) on the order of <0.02 dex in log g over the full explored range 3.8
< log g < 4.6, with the mean value varying only with stellar magnitude (0.01 -
0.02 dex). We study sources of systematic errors in log g and find possible
biases on the order of 0.04 dex, independent of log g and magnitude, which
accounts for errors in the Teff and [Fe/H] measurements, as well as from using
a different grid-based method. We conclude that Kepler stars provide a wealth
of reliable information that can help to calibrate methods that Gaia will use,
in particular, for source characterisation with GSP_Phot where excellent
precision (small uncertainties) and accuracy in log g is obtained from seismic
data.Comment: Accepted MNRAS, 15 pages (10 figures and 3 tables), v2=some rewording
of two sentence
The Excitation of NH in Interstellar Molecular Clouds. I - Models
We present LVG and non-local radiative transfer calculations involving the
rotational and hyperfine structure of the spectrum of NH with
collisional rate coefficients recently derived by us. The goal of this study is
to check the validity of the assumptions made to treat the hyperfine structure
and to study the physical mechanisms leading to the observed hyperfine
anomalies.
We find that the usual hypothesis of identical excitation temperatures for
all hyperfine components of the =1-0 transition is not correct within the
range of densities existing in cold dense cores, i.e., a few 10 \textless
n(H) \textless a few 10 cm. This is due to different radiative
trapping effects in the hyperfine components. Moreover, within this range of
densities and considering the typical abundance of NH, the total
opacity of rotational lines has to be derived taking into account the hyperfine
structure. The error made when only considering the rotational energy structure
can be as large as 100%. Using non-local models we find that, due to
saturation, hyperfine anomalies appear as soon as the total opacity of the
=1-0 transition becomes larger than 20. Radiative scattering in
less dense regions enhance these anomalies, and particularly, induce a
differential increase of the excitation temperatures of the hyperfine
components. This process is more effective for the transitions with the highest
opacities for which emerging intensities are also reduced by self-absorption
effects. These effects are not as critical as in HCO or HCN, but should be
taken into account when interpreting the spatial extent of the NH
emission in dark clouds.Comment: 13 pages, 12 figure
Construction of coherent states for physical algebraic systems
We construct a general state which is an eigenvector of the annihilation
operator of the Generalized Heisenberg Algebra. We show for several systems,
which are characterized by different energy spectra, that this general state
satisfies the minimal set of conditions required to obtain Klauder's minimal
coherent states.Comment: 15 pages, 3 figure
The role of front-end ac/dc converters in hybrid ac/dc smart homes: Analysis and experimental validation
Electrical power grids are rapidly evolving into smart grids, with smart homes also making an important contribution to this. In fact, the well-known and emerging technologies of renewables, energy storage systems and electric mobility are each time more distributed throughout the power grid and included in smart homes. In such circumstances, since these technologies are natively operating in DC, it is predictable for a revolution in the electrical grid craving a convergence to DC grids. Nevertheless, traditional loads natively operating in AC will continue to be used, highlighting the importance of hybrid AC/DC grids. Considering this new paradigm, this paper has as main innovation points the proposed control algorithms regarding the role of front-end AC/DC converters in hybrid AC/DC smart homes, demonstrating their importance for providing unipolar or bipolar DC grids for interfacing native DC technologies, such as renewables and electric mobility, including concerns regarding the power quality from a smart grid point of view. Furthermore, the paper presents a clear description of the proposed control algorithms, aligned with distinct possibilities of complementary operation of front-end AC/DC converters in the perspective of smart homes framed within smart grids, e.g., enabling the control of smart homes in a coordinated way. The analysis and experimental results confirmed the suitability of the proposed innovative operation modes for hybrid AC/DC smart homes, based on two different AC/DC converters in the experimental validation
Primary and secondary scintillation measurements in a xenon Gas Proportional Scintillation Counter
NEXT is a new experiment to search for neutrinoless double beta decay using a
100 kg radio-pure high-pressure gaseous xenon TPC. The detector requires
excellent energy resolution, which can be achieved in a Xe TPC with
electroluminescence readout. Hamamatsu R8520-06SEL photomultipliers are good
candidates for the scintillation readout. The performance of this
photomultiplier, used as VUV photosensor in a gas proportional scintillation
counter, was investigated. Initial results for the detection of primary and
secondary scintillation produced as a result of the interaction of 5.9 keV
X-rays in gaseous xenon, at room temperature and at pressures up to 3 bar, are
presented. An energy resolution of 8.0% was obtained for secondary
scintillation produced by 5.9 keV X-rays. No significant variation of the
primary scintillation was observed for different pressures (1, 2 and 3 bar) and
for electric fields up to 0.8 V cm-1 torr-1 in the drift region, demonstrating
negligible recombination luminescence. A primary scintillation yield of 81 \pm
7 photons was obtained for 5.9 keV X-rays, corresponding to a mean energy of 72
\pm 6 eV to produce a primary scintillation photon in xenon.Comment: 16 pages, 10 figures, accepted for publication in JINS
- …