49 research outputs found

    JAK2 V617F mutation and the myeloproliferative disorders

    Get PDF
    Myeloproliferative disorders are clonal hematopoietic diseases that are characterized by the amplification of one or more myeloid lineages. Polycythemia vera, essential thrombocythemia, idiopathic myelofibrosis and chronic myeloid leukemia are considered classic myeloproliferative disorders and share common clinical and biological features. While the genetic basis of chronic myeloid leukemia is shown to be the constitutive active protein BCR-ABL, the main molecular lesions in polycythemia vera, essential thrombocythemia and idiopathic myelofibrosis remain unknown. This review focuses on the recent discovery of the JAK2 V617F mutation, its relationship to the myeloproliferative phenotype and implications in the clinical approach of patients.Síndromes mieloproliferativas (SMPs) são doenças hematopoéticas de origem clonal que apresentam amplificação de uma ou mais linhagens mielóides. Policitemia vera (PV), trombocitemia essencial (TE), mielofibrose idiopática (MF) e leucemia mielóide crônica (LMC) são consideradas SMPs clássicas e apresentam características clínicas e biológicas comuns. Ao contrário de LMC, cuja etiologia está relacionada à proteína constitutivamente ativa Bcr-Abl, o mecanismo molecular de PV, TE e MF permaneceu por muito tempo desconhecido. Esta revisão se foca na recente descoberta da mutação JAK2 V617F em pacientes com PV, TE e MF, sua relação com o fenótipo mieloproliferativo e implicações na abordagem clínica de pacientes.24124

    Biodiversidade, população e economia: uma região de mata atlântica [Biodiversity, Population, and Economy: a region of atlantic forest]

    Get PDF
    Minas Gerais; Rio Doce; mata atlântica; atlantic forest; sustainable development; conservation; regional development; environment

    Land use interpretation for cellular automata models with socioeconomic heterogeneity

    Get PDF
    Cellular automata models for simulation of urban development usually lack the social heterogeneity that is typical of urban environments. In order to handle this shortcoming, this paper proposes the use of supervised clustering analysis to provide socioeconomic intra-urban land use classification at different levels to be applied to cellular automata models. An empirical test in a highly diverse context in the Greater Metropolitan Area of Belo Horizonte (RMBH) in Brazil is provided. The results show that a reliable division into different socioeconomic land-use classes at large scale enable detailed urban dynamic analysis. Furthermore, the results also allow the quantification of the proportion of urban space occupation for different levels of income; (2) and their pattern in relation to the city centre
    corecore