168 research outputs found

    Determinants of the population growth of the West Nile virus mosquito vector Culex pipiens in a repeatedly affected area in Italy

    Get PDF
    Background The recent spread of West Nile Virus in temperate countries has raised concern. Predicting the likelihood of transmission is crucial to ascertain the threat to Public and Veterinary Health. However, accurate models of West Nile Virus (WNV) expansion in Europe may be hampered by limited understanding of the population dynamics of their primary mosquito vectors and their response to environmental changes.<p></p> Methods We used data collected in north-eastern Italy (2009–2011) to analyze the determinants of the population growth rate of the primary WNV vector Culex pipiens. A series of alternative growth models were fitted to longitudinal data on mosquito abundance to evaluate the strength of evidence for regulation by intrinsic density-dependent and/or extrinsic environmental factors. Model-averaging algorithms were then used to estimate the relative importance of intrinsic and extrinsic variables in describing the variations of per-capita growth rates.<p></p> Results Results indicate a much greater contribution of density-dependence in regulating vector population growth rates than of any environmental factor on its own. Analysis of an average model of Cx. pipiens growth revealed that the most significant predictors of their population dynamics was the length of daylight, estimated population size and temperature conditions in the 15 day period prior to sampling. Other extrinsic variables (including measures of precipitation, number of rainy days, and humidity) had only a minor influence on Cx. pipiens growth rates.<p></p> Conclusions These results indicate the need to incorporate density dependence in combination with key environmental factors for robust prediction of Cx. pipiens population expansion and WNV transmission risk. We hypothesize that detailed analysis of the determinants of mosquito vector growth rate as conducted here can help identify when and where an increase in vector population size and associated WNV transmission risk should be expected.<p></p&gt

    Detection of Invasive Mosquito Vectors Using Environmental DNA (eDNA) from Water Samples.

    Get PDF
    Repeated introductions and spread of invasive mosquito species (IMS) have been recorded on a large scale these last decades worldwide. In this context, members of the mosquito genus Aedes can present serious risks to public health as they have or may develop vector competence for various viral diseases. While the Tiger mosquito (Aedes albopictus) is a well-known vector for e.g. dengue and chikungunya viruses, the Asian bush mosquito (Ae. j. japonicus) and Ae. koreicus have shown vector competence in the field and the laboratory for a number of viruses including dengue, West Nile fever and Japanese encephalitis. Early detection and identification is therefore crucial for successful eradication or control strategies. Traditional specific identification and monitoring of different and/or cryptic life stages of the invasive Aedes species based on morphological grounds may lead to misidentifications, and are problematic when extensive surveillance is needed. In this study, we developed, tested and applied an environmental DNA (eDNA) approach for the detection of three IMS, based on water samples collected in the field in several European countries. We compared real-time quantitative PCR (qPCR) assays specific for these three species and an eDNA metabarcoding approach with traditional sampling, and discussed the advantages and limitations of these methods. Detection probabilities for eDNA-based approaches were in most of the specific comparisons higher than for traditional survey and the results were congruent between both molecular methods, confirming the reliability and efficiency of alternative eDNA-based techniques for the early and unambiguous detection and surveillance of invasive mosquito vectors. The ease of water sampling procedures in the eDNA approach tested here allows the development of large-scale monitoring and surveillance programs of IMS, especially using citizen science projects

    Human west nile virus lineage 2 infection: Epidemiological, clinical, and virological findings

    Get PDF
    West Nile virus (WNV) lineage 2 is expanding and causing large outbreaks in Europe. In this study, we analyzed the epidemiological, clinical, and virological features of WNV lineage 2 infection during the large outbreak that occurred in northern Italy in 2018. The study population included 86 patients with neuroinvasive disease (WNND), 307 with fever (WNF), and 34 blood donors. Phylogenetic analysis of WNV full genome sequences from patients' samples showed that the virus belonged to the widespread central/southern European clade of WNV lineage 2 and was circulating in the area at least since 2014. The incidence of WNND and WNF progressively increased with age and was higher in males than in females. Among WNND patients, the case fatality rate was 22%. About 70% of blood donors reported symptoms during follow-up. Within the first week after symptom onset, WNV RNA was detectable in the blood or urine of 80% of patients, while 20% and 40% of WNND and WNF patients, respectively, were WNV IgM-seronegative. In CSF samples of WNND patients, WNV RNA was typically detectable when WNV IgM antibodies were absent. Blunted or no WNV IgM response and high WNV IgG levels were observed in seven patients with previous flavivirus immunity

    Ticks infesting humans in Italy and associated pathogens

    Get PDF
    Background: Ticks may transmit a large variety of pathogens, which cause illnesses in animals and humans, commonly referred to as to tick-borne diseases (TBDs). The incidence of human TBDs in Italy is underestimated because of poor surveillance and the scant amount of studies available. Methods. Samples (n = 561) were collected from humans in four main geographical areas of Italy (i.e., northwestern, northeastern, southern Italy, and Sicily), which represent a variety of environments. After being morphologically identified, ticks were molecularly tested with selected protocols for the presence of pathogens of the genera Rickettsia, Babesia, Theileria, Candidatus Neoehrlichia mikurensis, Borrelia and Anaplasma. Results: Ticks belonged to 16 species of the genera Argas, Dermacentor, Haemaphysalis, Hyalomma, Ixodes and Rhipicephalus, with Ixodes ricinus (59.5%) being the species most frequently retrieved, followed by Rhipicephalus sanguineus sensu lato (21.4%). Nymphs were the life stage most frequently retrieved (41%), followed by adult females (34.6%). The overall positivity to any pathogen detected was 18%. Detected microorganisms were Rickettsia spp. (17.0%), Anaplasma phagocytophilum (0.8%), Borrelia afzelii (0.5%), Borrelia valaisiana (0.3%), C. N. mikurensis (0.5%) and Babesia venatorum (0.6%). Conclusions: Results indicate that people living in the Italian peninsula are at risk of being bitten by different tick species, which may transmit a plethora of TBD causing pathogens and that co-infections may also occur. © 2014 Otranto et al.; licensee BioMed Central Ltd

    Hyperendemic Dirofilaria immitis infection in a sheltered dog population: an expanding threat in the Mediterranean region

    Get PDF
    A study on the occurrence of Dirofilaria immitis and its vectors was carried out in order to assess the prevalence of the disease in dogs in previously non-endemic areas of southern Italy. Blood samples (n = 385) and mosquitoes (n = 1540) were collected in two dog shelters and analysed by Knott's test and duplex real-time PCR, respectively. Dirofilaria immitis was the most prevalent filarioid (44.2%), while Culex pipiens was the most prevalent mosquito species (68.8%). This high prevalence of D. immitis infection confirms this location as one of the most hyperendemic foci of dirofilariosis in Europe

    Shallow whole-genome sequencing of Aedes japonicus and Aedes koreicus from Italy and an updated picture of their evolution based on mitogenomics and barcoding

    Get PDF
    Aedes japonicus and Aedes koreicus are two invasive mosquitoes native to East Asia that are quickly establishing in temperate regions of Europe. Both species are vectors of arboviruses, but we currently lack a clear understanding of their evolution. Here, we present new short-read, shallow genome sequencing of A. japonicus and A. koreicus individuals from northern Italy, which we used for downstream phylogenetic and barcode analyses. We explored associated microbial DNA and found high occurrences of Delftia bacteria in both samples, but neither Asaia nor Wolbachia. We then assembled complete mitogenomes and used these data to infer divergence times estimating the split of A. japonicus from A. koreicus in the Oligocene, which was more recent than that previously reported using mitochondrial markers. We recover a younger age for most other nodes within Aedini and other Culicidae. COI barcoding and phylogenetic analyses indicate that A. japonicus yaeyamensis, A. japonicus amamiensis, and the two A. koreicus sampled from Europe should be considered as separate species within a monophyletic species complex. Our studies further clarify the evolution of A. japonicus and A. koreicus, and indicate the need to obtain whole-genome data from putative species in order to disentangle their complex patterns of evolution

    VectAbundance: a spatio-temporal database of Aedes mosquitoes observations

    Get PDF
    Modelling approaches play a crucial role in supporting local public health agencies by estimating and forecasting vector abundance and seasonality. However, the reliability of these models is contingent on the availability of standardized, high-quality data. Addressing this need, our study focuses on collecting and harmonizing egg count observations of the mosquito Aedes albopictus, obtained through ovitraps in monitoring and surveillance efforts across Albania, France, Italy, and Switzerland from 2010 to 2022. We processed the raw observations to obtain a continuous time series of ovitraps observations allowing for an extensive geographical and temporal coverage of Ae. albopictus population dynamics. The resulting post-processed observations are stored in the open-access database VectAbundance.This initiative addresses the critical need for accessible, high-quality data, enhancing the reliability of modelling efforts and bolstering public health preparednes
    corecore