70 research outputs found

    Temporo-Spatial Dynamics of Event-Related EEG Beta Activity during the Initial Contingent Negative Variation

    Get PDF
    In the electroencephalogram (EEG), early anticipatory processes are accompanied by a slow negative potential, the initial contingent negative variation (iCNV), occurring between 500 and 1500 ms after cue onset over prefrontal cortical regions in tasks with cue-target intervals of about 3 s or longer. However, the temporal sequence of the distributed cortical activity contributing to iCNV generation remains unclear. During iCNV generation, selectively enhanced low-beta activity has been reported. Here we studied the temporal order of activation foci in cortical regions assumed to underlie iCNV generation using source reconstruction of low-beta (13–18 Hz) activity. During the iCNV, elicited by a cued simple reaction-time task, low-beta power peaked first (750 ms after cue onset) in anterior frontal and limbic regions and last (140 ms later) in posterior areas. This activity occurred 3300 ms before target onset and provides evidence for the temporally ordered involvement of both cognitive-control and motor-preparation processes already at early stages during the preparation for speeded action

    The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description

    Get PDF
    On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2-7 m, while providing data at sub-mm to mm scales. We report on SuperCam's science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.In France was provided by the Centre National d'Etudes Spatiales (CNES). Human resources were provided in part by the Centre National de la Recherche Scientifique (CNRS) and universities. Funding was provided in the US by NASA's Mars Exploration Program. Some funding of data analyses at Los Alamos National Laboratory (LANL) was provided by laboratory-directed research and development funds

    Methylazoxymethanol acetate does not fully block cell genesis in the young and aged dentate gyrus.

    No full text
    During adulthood, new neurons are continuously added to the mammalian dentate gyrus (DG). An increasing number of studies have correlated changes in rates of dentate neurogenesis with memory abilities. One study based on subchronic treatment with the toxin methylazoxymethanol acetate (MAM) has provided causal evidence that neurogenesis is involved in hippocampal-dependent trace conditioning. In contrast, spatial learning is not impaired following MAM treatment. We hypothesized that this was due to the small residual number of new cells produced following MAM treatment. In the present experiment, we attempted to achieve a higher level of reduction of adult-generated cells following MAM treatment in young and aged rats. We found only a partial reduction of adult-generated cells in the DG. More importantly, independently of the age of the animals, MAM treatment at a dose necessary to reduce neurogenesis altered the overall health of the animals. In conclusion, the behavioural results obtained following subchronic treatment with high doses of MAM in adulthood must be interpreted with extreme caution

    Methylazoxymethanol acetate does not fully block cell genesis in the young and aged dentate gyrus.

    No full text
    During adulthood, new neurons are continuously added to the mammalian dentate gyrus (DG). An increasing number of studies have correlated changes in rates of dentate neurogenesis with memory abilities. One study based on subchronic treatment with the toxin methylazoxymethanol acetate (MAM) has provided causal evidence that neurogenesis is involved in hippocampal-dependent trace conditioning. In contrast, spatial learning is not impaired following MAM treatment. We hypothesized that this was due to the small residual number of new cells produced following MAM treatment. In the present experiment, we attempted to achieve a higher level of reduction of adult-generated cells following MAM treatment in young and aged rats. We found only a partial reduction of adult-generated cells in the DG. More importantly, independently of the age of the animals, MAM treatment at a dose necessary to reduce neurogenesis altered the overall health of the animals. In conclusion, the behavioural results obtained following subchronic treatment with high doses of MAM in adulthood must be interpreted with extreme caution
    • …
    corecore