10 research outputs found

    Synthesis of Marine α-Methoxylated Fatty Acid Analogs that Effectively Inhibit the Topoisomerase IB from Leishmania donovani with a Mechanism Different from that of Camptothecin

    Get PDF
    Sponges biosynthesize α-methoxylated fatty acids with unusual biophysical and biological properties and in some cases they display enhanced anticancer activities. However, the antiprotozoal properties of the α-methoxylated fatty acids have been less studied. In this work, we describe the total synthesis of (5Z,9Z)-(±)-2-methoxy-5, 9-eicosadienoic acid (1) and its acetylenic analog (±)-2-methoxy-5,9-eicosadiynoic acid (2), and report that they inhibit (EC50 values between 31 and 22 ”M) the Leishmania donovani DNA topoisomerase IB enzyme (LdTopIB). The inhibition of LdTopIB (EC50 = 53 ”M) by the acid (±)-2-methoxy-6-icosynoic acid (12) was studied as well. The potency of LdTopIB inhibition followed the trend 2 > 1 > 12, indicating that the effectiveness of inhibition depends on the degree of unsaturation. All of the studied α-methoxylated fatty acids failed to inhibit the human topoisomerase IB enzyme (hTopIB) at 100 ”M. However, the α-methoxylated fatty acids were capable of inhibiting an active but truncated LdTopIB with which camptothecin (CPT) cannot interact suggesting that the methoxylated fatty acids inhibit LdTopIB with a mechanism different from that of CPT. The diunsaturated fatty acids displayed low cytotoxicity towards Leishmania infantum promastigotes (EC50 values between 260 and 240 ”M), but 12 displayed a better cytotoxicity towards Leishmania donovani promastigotes (EC50 = 100 ”M) and a better therapeutic index

    Synthesis of Marine α-Methoxylated Fatty Acid Analogs that Effectively Inhibit the Topoisomerase IB from Leishmania donovani with a Mechanism Different from that of Camptothecin

    Get PDF
    Sponges biosynthesize α-methoxylated fatty acids with unusual biophysical and biological properties and in some cases they display enhanced anticancer activities. However, the antiprotozoal properties of the α-methoxylated fatty acids have been less studied. In this work, we describe the total synthesis of (5Z,9Z)-(±)-2-methoxy-5, 9-eicosadienoic acid (1) and its acetylenic analog (±)-2-methoxy-5,9-eicosadiynoic acid (2), and report that they inhibit (EC50 values between 31 and 22 ”M) the Leishmania donovani DNA topoisomerase IB enzyme (LdTopIB). The inhibition of LdTopIB (EC50 = 53 ”M) by the acid (±)-2-methoxy-6-icosynoic acid (12) was studied as well. The potency of LdTopIB inhibition followed the trend 2 > 1 > 12, indicating that the effectiveness of inhibition depends on the degree of unsaturation. All of the studied α-methoxylated fatty acids failed to inhibit the human topoisomerase IB enzyme (hTopIB) at 100 ”M. However, the α-methoxylated fatty acids were capable of inhibiting an active but truncated LdTopIB with which camptothecin (CPT) cannot interact suggesting that the methoxylated fatty acids inhibit LdTopIB with a mechanism different from that of CPT. The diunsaturated fatty acids displayed low cytotoxicity towards Leishmania infantum promastigotes (EC50 values between 260 and 240 ”M), but 12 displayed a better cytotoxicity towards Leishmania donovani promastigotes (EC50 = 100 ”M) and a better therapeutic index
    corecore