6,640 research outputs found

    SN/GRB connection: a statistical approach with BATSE and Asiago Catalogues

    Get PDF
    Recent observations suggest that some types of GRB are physically connected with SNe of type Ib/c. However, it has been pointed out by several authors that some GRBs could be associated also with other types of core-collapse SNe (type IIdw/IIn). On the basis of a comphrensive statistical study, which has made use of the BATSE and Asiago catalogues, we have found that: i) the temporal and spacial distribution of SNe-Ib/c is marginally correlated with that of the BATSE GRBs; ii) we do not confirm the existence of an association between GRBs and SNe-IIdw/IIn.Comment: Proceeding of the 4th workshop on Gamma Ray Bursts in the Afterglow Era, Rome, 2004; 4 page

    L∞ -estimates in optimal transport for non quadratic costs

    Get PDF
    For cost functions c(x, y) = h(x- y) , with h∈ C2(Rn\ { 0 }) ∩ C1(Rn) homogeneous of degree p> 1 , we show L∞-estimates of Tx- x on balls, where T is an h-monotone map. Estimates for the interpolating mappings Tt= t(T- I) + I are deduced from this

    A microscopic description of the aging dynamics: fluctuation-dissipation relations, effective temperature and heterogeneities

    Full text link
    We consider the dynamics of a diluted mean-field spin glass model in the aging regime. The model presents a particularly rich heterogeneous behavior. In order to catch this behavior, we perform a **spin-by-spin analysis** for a **given disorder realization**. The results compare well with the outcome of a static calculation which uses the ``survey propagation'' algorithm of Mezard, Parisi, and Zecchina [Sciencexpress 10.1126/science.1073287 (2002)]. We thus confirm the connection between statics and dynamics at the level of single degrees of freedom. Moreover, working with single-site quantities, we can introduce a new response-vs-correlation plot, which clearly shows how heterogeneous degrees of freedom undergo coherent structural rearrangements. Finally we discuss the general scenario which emerges from our work and (possibly) applies to more realistic glassy models. Interestingly enough, some features of this scenario can be understood recurring to thermometric considerations.Comment: 4 pages, 5 figures (7 eps files

    Probing the diffusive behaviour of beam-halo dynamics in circular accelerators

    Get PDF
    Circular particle accelerators at the energy frontier are based on superconducting magnets that are extremely sensitive to beam losses as these might induce quenches, i.e. transitions to the normal-conducting state. Furthermore, the energy stored in the circulating beam is so large that hardware integrity is put in serious danger, and machine protection becomes essential for reaching the nominal accelerator performance. In this challenging context, the beam halo becomes a potential source of performance limitations and its dynamics needs to be understood in detail to assess whether it could be an issue for the accelerator. In this paper, we discuss in detail a recent framework, based on a diffusive approach, to model beam-halo dynamics. The functional form of the optimal estimate of the perturbative series, as given by Nekhoroshev’s theorem, is used to provide the functional form of the action diffusion coefficient. The goal is to propose an effective model for the beam-halo dynamics and to devise an efficient experimental procedure to obtain an accurate measurement of the diffusion coefficient

    The GRB Variability/Peak Luminosity Correlation: new results

    Get PDF
    We report test results of the correlation between time variability and peak luminosity of Gamma-Ray Bursts (GRBs), using a larger sample (32) of GRBs with known redshift than that available to Reichart et al. (2001), and using as variability measure that introduced by these authors. The results are puzzling. Assuming an isotropic-equivalent peak luminosity, as done by Reichart et al. (2001), a correlation is still found, but it is less relevant, and inconsistent with a power law as previously reported. Assuming as peak luminosity that corrected for GRB beaming for a subset of 16 GRBs with known beaming angle, the correlation becomes little less significant.Comment: 11 pages, 10 figures, MNRAS, accepte

    The Bethe approximation for solving the inverse Ising problem: a comparison with other inference methods

    Full text link
    The inverse Ising problem consists in inferring the coupling constants of an Ising model given the correlation matrix. The fastest methods for solving this problem are based on mean-field approximations, but which one performs better in the general case is still not completely clear. In the first part of this work, I summarize the formulas for several mean- field approximations and I derive new analytical expressions for the Bethe approximation, which allow to solve the inverse Ising problem without running the Susceptibility Propagation algorithm (thus avoiding the lack of convergence). In the second part, I compare the accuracy of different mean field approximations on several models (diluted ferromagnets and spin glasses) defined on random graphs and regular lattices, showing which one is in general more effective. A simple improvement over these approximations is proposed. Also a fundamental limitation is found in using methods based on TAP and Bethe approximations in presence of an external field.Comment: v3: strongly revised version with new methods and results, 25 pages, 21 figure

    Spectral catalogue of bright gamma-ray bursts detected with the BeppoSAX/GRBM

    Get PDF
    The emission process responsible for the so-called "prompt" emission of gamma-ray bursts is still unknown. A number of empirical models fitting the typical spectrum still lack a satisfactory interpretation. A few GRB spectral catalogues derived from past and present experiments are known in the literature and allow to tackle the issue of spectral properties of gamma-ray bursts on a statistical ground. We extracted and studied the time-integrated photon spectra of the 200 brightest GRBs observed with the Gamma-Ray Burst Monitor which flew aboard the BeppoSAX mission (1996-2002) to provide an independent statistical characterisation of GRB spectra. The spectra were fit with three models: a simple power-law, a cut-off power law or a Band function. The typical photon spectrum of a bright GRB consists of a low-energy index around 1.0 and a peak energy of the nuFnu spectrum E_p~240 keV in agreement with previous results on a sample of bright CGRO/BATSE bursts. Spectra of ~35% of GRBs can be fit with a power-law with a photon index around 2, indicative of peak energies either close to or outside the GRBM energy boundaries. We confirm the correlation between E_p and fluence, with a logarithmic dispersion of 0.13 around the power-law with index 0.21+-0.06. The low-energy and peak energy distributions are not yet explained in the current literature. The capability of measuring time-resolved spectra over a broadband energy range, ensuring precise measurements of parameters such as E_p, will be crucial for future experiments (abridged).Comment: 28 pages, 20 figures, 3 tables, accepted to A&
    • …
    corecore