270 research outputs found

    Soil Drainage as an Active Agent of Recent Soil Evolution

    Get PDF
    International audienceWhile research on pedogenesis mainly focuses on long-term soil formation and most often neglects recent soil evolution in response to human practices or climate changes, this article reviews the impact of artificial subsurface drainage on soil evolution. Artificial drainage is considered as an example of the impact of recent changes in water fluxes on soil evolution over time scales of decades to a century. Results from various classical studies on artificial drainage including hydrological and environmental studies are reviewed and collated with rare studies dealing explicitly with soil morphology changes, in response to artificial drainage. We deduce that soil should react to the perturbations associated with subsurface drainage over time scales that do not exceeding a few decades. Subsurface drainage decreases the intensity of erosion and must i) increase the intensity of the lixiviation and eluviation processes, ii) affect iron and manganese dynamics, and iii) induce heterogeneities in soil evolution at the ten meter scale. Such recent soil evolutions can no longer be neglected as they are mostly irreversible and will probably have unknown, but expectable, feedbacks on crucial soil functions such as the sequestration of soil organic matter or the water available capacity

    Status of Coral Reef Communities on Two Carbonate Platforms (Tun Sakaran Marine Park, East Sabah, Malaysia)

    Get PDF
    International audienceThis study concerns three sites, located on carbonate platforms, east Sabah: Gaya West, Gaya East, and Mantabuan. At each site, the dominant coral shapes and their health were recorded (lagoons and outer slopes). Densities of echinoderms, Tridacna, and nudibranchs were recorded while fish density was estimated. Generally, the coral vitality is low (≤50% living corals). Massive corals dominate all sites, except the Gaya West-outer slope where coral coverage and diversity are the highest. On the Mantabuan-mesh reef, a diverse Acropora assemblage dominates the landscape. On the reef flat of Gaya East, monospecific circa 10 meter coral patches occur. Primary producers are scarce on all sites. Sea urchins, dominated by Diadema, are abundant on the Gaya East-reef flat and the Gaya West-mesh reef. Sea stars and holothurids are the most prevalent in Gaya West-outer slope, although they remain scarce. Crinoids are only abundant in Mantabuan. Stegastes damselfish highly characterizes the sites of Gaya East (reef flat and inner slope) and the Mantabuan-mesh reef. On the Mantabuan-outer slope, parrotfish and other fishes are plentiful. No sign of eutrophication has been detected and natural hypersedimentation and/or eventual ancient bleaching events appear to be the direct principal causes of coral death or coral degradation

    Using Bayesian multispecies models to evaluate fish and invertebrate detection probability and distribution in the hypersaline Bahia Grande tidal basin

    Get PDF
    Objective In 2000, the Laguna Atascosa National Wildlife Refuge acquired the Bahia Grande (Texas) management unit, a space that had lain barren and arid for 70 years. A large cooperative partnership launched a restoration project to replenish the basin and recover its original tidal hydrology. In 2005, the construction of a pilot channel successfully restored water throughout the basin, and plans to eventually widen the channel were developed. Our study aims to evaluate an estuarine habitat restoration by assessing ecological drivers and the impacts on species diversity. Methods We evaluated species richness, detection/occupancy rates, and species–habitat relationships, and we estimated the sampling effort required to achieve a given level of relative precision if relative abundance was used instead of occupancy to inform future sampling. Sampling gear included bag seines for juvenile life stages and gill nets for capturing subadult and adult life stages. For analysis, we used a Bayesian negative binomial linear mixed-effects model to evaluate richness–habitat relationships and a hierarchical Bayesian multispecies model to evaluate individual species–habitat relationships, and we calculated the total number of fish captured and relative standard error by gear and sample year to produce a precise estimate of relative abundance. Result Overall, 29 species were caught between 2018 and 2021. Salinity emerged as a clear driver in the Bahia Grande, as both species richness and individual-level responses were negatively associated with high salinity values. We found that catch estimated as relative abundance had much variability, as is typical of most survey programs assuming constant detectability, and the number of net sets or seine hauls required to achieve a given level of relative precision varied considerably depending on the species, season, year, and gear type. The most collected species were found in the upper extremes of their salinity tolerances—potentially a unique adaptation to this hypersaline system. Conclusion Baseline data suggest that for the channel widening to be successful, there must be a noticeable increase in suitable habitat characteristics throughout the basin. Impact statement Habitat restoration is a unique opportunity to assess changes in aquatic communities. We used hierarchical Bayesian models to describe prerestoration community relationships for one of the largest coastal restorations in Texas. This flexible framework can be applied to other complex habitat restorations

    Lateral differentiation of Albeluvisols under the impact of subsurface drainage

    No full text
    Albeluvisols are temporarily waterlogged due to the argillic horizon that limits downward movement of rainfall water. These soils are hence frequently drained for cropping. Drainage modifies water movement in both direction and velocity, inducing a gradient in waterlogging conditions perpendicularly to the drain. Over time, it may induce a lateral differentiation of the soil solid phase with the distance from the drain. This study aims at characterising and quantifying this differentiation. Albeluvisols are characterised by the following horizon succession: A, Eg&BT, BTgd. The two last horizons exhibit a complex juxtaposition of white-grey, ochre and pale-brown volumes, and numerous black concretions or impregnations. In order to study the impact of drainage on the evolution of such soils, we have to characterise the soil differentiation perpendicularly to the drain by quantifying changes in the quality and the abundance of the different pedological volumes

    Impact of drainage on soil-forming mechanisms in a French Albeluvisol: Input of mineralogical data in mass-balance modelling

    No full text
    International audienceResearch on soil pedogenesis has mainly focused on the long-term soil formation and has most often neglected recent soil evolutions in response to human practices. Such recent soil evolutions are however of considerable interest to study the timing of soil forming processes in response to changes in environmental conditions. In this paper, we model the Albeluvisol evolution in response to agricultural drainage. This was considered as a model case to study the velocity of mineralogical changes in soil as a result of eluviation and redox processes. We used a space-for-time substitution approach in combination with mass balance modelling based on mineralogical data in order to identify and characterise the mineralogical transformations responsible for the recent soil evolution in response to subsurface drainage. This approach allowed demonstrating that the main effects of subsurface drainage are (i) increasing precipitation of Mn oxides and Mn-rich ferrihydrite with decreasing distance to the drain as a result of the change in redox conditions and (ii) increasing loss of clay-sized oxides and smectites due to the enhanced eluviation in the vicinity of the drain. Both processes induce significant matter fluxes in comparison with those that occurred over the long-term soil formation. Nowadays, the precipitation of Mn oxides and Mn-rich ferrihydrite seems to still be active in the studied soil. On the opposite, the eluviation process appears less active than immediately after the drainage network installation, if not totally inactive. It thus demonstrates that some soil processes may have significant impact on the soil mineralogical composition even if they are only active over very short periods of time after a change in environmental conditions

    Selective inhibition of GluN2D-containing N-methyl-D-aspartate receptors prevents tissue plasminogen activator-promoted neurotoxicity both in vitro and in vivo

    Get PDF
    BACKGROUND: Tissue plasminogen activator (tPA) exerts multiple functions in the central nervous system, depending on the partner with which it interacts. In particular, tPA acts as a positive neuromodulator of N-methyl-D-aspartate glutamatergic receptors (NMDAR). At the molecular level, it has been proposed that the pro-neurotoxicity mediated by tPA might occur through extrasynaptic NMDAR containing the GluN2D subunit. Thus, selective antagonists targeting tPA/GluN2D-containing NMDAR signaling would be of interest to prevent noxious effects of tPA. RESULTS: Here, we compared three putative antagonists of GluN2D-containing NMDAR and we showed that the new compound UBP145 ((2R*,3S*)-1-(9-bromophenan-threne-3-carbonyl)piperazine-2,3-dicarboxylic acid) is far more selective for GluN2D subunits than memantine and PPDA (phenanthrene derivative (2S*, 3R*)-1-(phenanthrene-2-carbonyl)piperazine-2,3-dicarboxylic acid). Indeed, in vitro, in contrast to the two other compounds, UBP145 prevented NMDA toxicity only in neurons expressing GluN2D (ie, in cortical but not hippocampal neurons). Furthermore, in cultured cortical neurons, UBP145 fully prevented the pro-excitotoxic effect of tPA. In vivo, we showed that UBP145 potently prevented the noxious action of exogenous tPA on excitotoxic damages. Moreover, in a thrombotic stroke model in mice, administration of UBP145 prevented the deleterious effect of late thrombolysis by tPA. CONCLUSIONS: In conclusion, tPA exerts noxious effects on neurons by acting on GluN2D-containing NMDAR and pharmacological antagonists of GluN2D-containing NMDAR could be used to prevent the ability of tPA to promote neurotoxicity

    Quantification of soil volumes in the Eg&Bt-horizon of an Albeluvisol using image analysis

    No full text
    In this study, we provide a strategy to quantify the effects on soil evolution of driving forces such as human activities or global change. This strategy was developed for situations in which soil evolution resulted in the formation of a complex juxtaposition of soil volumes with distinct properties including soil colours. It is based on image analysis. Our approach proceeds in two steps: (1) to find the minimum sample size over which the soil anisotropy can be neglected and (2) to define a Representative Elementary Volume (REV) of that sample. This approach was developed on the Eg&Bt horizon of a drained Albeluvisol in which three decimetric soil monoliths were sampled at 60, 110 and 210 cm from a drain. The monoliths were sliced in 1.5 cm horizontal layers. Each slice was photographed and studied by image analysis. At the monolith scale, there was neither lateral nor vertical anisotropy. The sampled monoliths were larger than the REV allowing quantification of the different soil volumes constituting this particular horizon. We quantified significant evolutions of the abundance of the different soil volumes characterized by their colour as a function of the distance to the drain. Such a quantification of the effects on soil evolution of human activities or global change equally applies for Podzols, Calcisols or Gleysols for which pedogenesis also resulted in contrasted soil colour evolutions

    Temporal features of sitting, standing and stepping changes in a cluster-randomised controlled trial of a workplace sitting-reduction intervention

    Get PDF
    Background There is now a body of evidence on the effectiveness of interventions to reduce workplace sitting time. However, there has been limited reporting of how such interventions may impact behaviour both during and outside of work. Sitting, standing and stepping changes following a workplace intervention were examined across five timeframes (work time on work days; non-work time on work days; work days; non-work days; overall (i.e. work and non-work time on all days)), and the relationships between changes during and outside of work was assessed. Methods The cluster-randomised controlled trial, ‘Stand Up Victoria’, delivered a multi-component workplace-delivered intervention that successfully reduced workplace and overall sitting time (relative to controls). Separately, over the five timeframes, changes in device (activPAL3)-assessed outcomes — sitting; prolonged sitting (≥30 min bouts); standing; and, stepping — were compared between intervention (n = 114) and controls (n = 84), along with the time-course of sitting changes during work hours, using mixed models. The potential relationships of changes during work with changes outside of work were examined using compositional data analysis. Results On workdays, intervention participants significantly (p < 0.05) improved their activity profile relative to controls, with reduced sitting (− 117 min/8-h workday, 95% CI: − 141, − 93) and prolonged sitting (− 77 min/8 h workday, 95% CI: − 101, − 52); increased standing (114 min/8 h workday, 95% CI: 92, 136) and maintenance of stepping (3 min/8 h workday, 95% CI: − 7, 11, p = 0.576). Effects were nearly identical for time at work; similar but slightly weaker for overall; and, small and non-significant outside of work on workdays and non-work days. Improvements occurred at all times, but not equally, during work hours (p < 0.001). Correlations between changes during and outside of work on workdays were very weak in both the intervention group (r = − 0.07) and controls (r = − 0.09). Conclusions Sitting time was reduced almost exclusively during work hours (via replacement with standing), with reductions evident during all working hours, to varying degrees. There was no evidence of compensation, with minimal change in activity outside of work, in response to changes in activity at work. Future interventions may benefit from exploring how best to elicit change throughout the whole day, and across work and non-work domains
    corecore