21 research outputs found

    White Matter Abnormalities Track Disease Progression in PSEN1 Autosomal Dominant Alzheimer's Disease

    Get PDF
    PSEN1 mutations are the most frequent cause of autosomal dominant Alzheimer's disease (ADAD), and show nearly full penetrance. There is presently increasing interest in the study of biomarkers that track disease progression in order to test therapeutic interventions in ADAD. We used white mater (WM) volumetric characteristics and diffusion tensor imaging (DTI) metrics to investigate correlations with the normalized time to expected symptoms onset (relative age ratio) and group differences in a cohort of 36 subjects from PSEN1 ADAD families: 22 mutation carriers, 10 symptomatic (SMC) and 12 asymptomatic (AMC), and 14 non-carriers (NC). Subjects underwent a 3T MRI. WM morphometric data and DTI metrics were analyzed. We found that PSEN1 MC showed significant negative correlation between fractional anisotropy (FA) and the relative age ratio in the genus and body of corpus callosum and corona radiate (p <  0.05 Family-wise error correction (FWE) at cluster level) and positive correlation with mean diffusivity (MD), axial diffusivity (AxD), and radial diffusivity (RD) in the splenium of corpus callosum. SMC presented WM volume loss, reduced FA and increased MD, AxD, and RD in the anterior and posterior corona radiate, corpus callosum (p <  0.05 FWE) compared with NC. No significant differences were observed between AMC and NC in WM volume or DTI measures. These findings suggest that the integrity of the WM deteriorates linearly in PSEN1 ADAD from the early phases of the disease; thus DTI metrics might be useful to monitor the disease progression. However, the lack of significant alterations at the preclinical stages suggests that these indexes might not be good candidates for early markers of the disease

    Sex differences in brain and cognition in de novo Parkinson's disease

    Get PDF
    Background and objective: Brain atrophy and cognitive impairment in neurodegenerative diseases are influenced by sex. We aimed to investigate sex differences in brain atrophy and cognition in de novo Parkinson's disease (PD) patients. Methods: Clinical, neuropsychological and T1-weighted MRI data from 205 PD patients (127 males:78 females) and 69 healthy controls (40 males:29 females) were obtained from the PPMI dataset. Results: PD males had a greater motor and rapid eye movement sleep behavior disorder symptomatology than PD females. They also showed cortical thinning in postcentral and precentral regions, greater global cortical and subcortical atrophy and smaller volumes in thalamus, caudate, putamen, pallidum, hippocampus, and brainstem, compared with PD females. Healthy controls only showed reduced hippocampal volume in males compared to females. PD males performed worse than PD females in global cognition, immediate verbal recall, and mental processing speed. In both groups males performed worse than females in semantic verbal fluency and delayed verbal recall; as well as females performed worse than males in visuospatial function. Conclusions: Sex effect in brain and cognition is already evident in de novo PD not explained by age per se, being a relevant factor to consider in clinical and translational research in PD

    Brain atrophy pattern in de novo Parkinsons disease with probable RBD associated with cognitive impairment

    Full text link
    Rapid eye movement sleep behavior disorder (RBD) is associated with high likelihood of prodromal Parkinson's disease (PD) and is common in de novo PD. It is associated with greater cognitive impairment and brain atrophy. However, the relation between structural brain characteristics and cognition remains poorly understood. We aimed to investigate subcortical and cortical atrophy in de novo PD with probable RBD (PD-pRBD) and to relate it with cognitive impairment. We analyzed volumetry, cortical thickness, and cognitive measures from 79 PD-pRBD patients, 126 PD without probable RBD patients (PD-non pRBD), and 69 controls from the Parkinson's Progression Markers Initiative (PPMI). Regression models of cognition were tested using magnetic resonance imaging measures as predictors. We found lower left thalamus volume in PD-pRBD compared with PD-non pRBD. Compared with controls, PD-pRBD group showed atrophy in the bilateral putamen, left hippocampus, left amygdala, and thinning in the right superior temporal gyrus. Specific deep gray matter nuclei volumes were associated with impairment in global cognition, phonemic fluency, processing speed, and visuospatial function in PD-pRBD. In conclusion, cognitive impairment and gray matter atrophy are already present in de novo PD-pRBD. Thalamus, hippocampus, and putamen volumes were mainly associated with these cognitive deficits

    Structural brain changes in post-acute COVID-19 patients with persistent olfactory dysfunction

    Full text link
    Objective: This research aims to study structural brain changes in patients with persistent olfactory dysfunctions after coronavirus disease 2019 (COVID-19). Methods: COVID-19 patients were evaluated using T1-weighted and diffusion tensor imaging (DTI) on a 3T MRI scanner, 9.94 ± 3.83 months after COVID-19 diagnosis. Gray matter (GM) voxel-based morphometry was performed using FSL-VBM. Voxelwise statistical analysis of the fractional anisotropy, mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity was carried out with the tract-based spatial statistics in the olfactory system. The smell identification test (UPSIT) was used to classify patients as normal olfaction or olfactory dysfunction groups. Intergroup comparisons between GM and DTI measures were computed, as well as correlations with the UPSIT scores. Results: Forty-eight COVID-19 patients were included in the study. Twenty-three were classified as olfactory dysfunction, and 25 as normal olfaction. The olfactory dysfunction group had lower GM volume in a cluster involving the left amygdala, insular cortex, parahippocampal gyrus, frontal superior and inferior orbital gyri, gyrus rectus, olfactory cortex, caudate, and putamen. This group also showed higher MD values in the genu of the corpus callosum, the orbitofrontal area, the anterior thalamic radiation, and the forceps minor; and higher RD values in the anterior corona radiata, the genu of the corpus callosum, and uncinate fasciculus compared with the normal olfaction group. The UPSIT scores for the whole sample were negatively associated with both MD and RD values (p-value ≤0.05 FWE-corrected). Interpretation: There is decreased GM volume and increased MD in olfactory-related regions explaining prolonged olfactory deficits in post-acute COVID-19 patients

    Impaired Structural Connectivity In Parkinson's Disease Patients With Mild Cognitive Impairment: A Study Based On Probabilistic Tractography

    Full text link
    Background: Probabilistic tractography, in combination with graph theory, has been used to reconstruct the structural whole-brain connectome. Threshold-free network-based statistics (TFNBS) is a useful technique to study structural connectivity in neurodegenerative disorders; however, there are no previous studies using TFNBS in Parkinson's disease (PD) with and without mild cognitive impairment (MCI). Methods: Sixty-two PD patients, 27 of whom classified as PD-MCI, and 51 healthy controls (HC) underwent diffusion-weighted 3T MRI. Probabilistic tractography, using FSL, was used to compute the number of streamlines (NOS) between regions. NOS matrices were used to find group differences with TFNBS, and to calculate global and local measures of network integrity using graph theory. A binominal logistic regression was then used to assess the discrimination between PD with and without MCI using non-overlapping significant tracts. Tract-based spatial statistics (TBSS) were also performed with FSL to study changes in fractional anisotropy (FA) and mean diffusivity (MD). Results: PD-MCI showed 37 white matter (WM) connections with reduced connectivity strength compared to HC, mainly involving temporo-occipital regions. These were able to differentiate PD-MCI from PD without MCI with an area under the curve of 83-85%. PD without MCI showed disrupted connectivity in 18 connections involving fronto-temporal regions. No significant differences were found in graph measures. Only PD-MCI showed reduced FA compared with HC. Discussion: TFNBS based on whole-brain probabilistic tractography can detect structural connectivity alterations in PD with and without MCI. Reduced structural connectivity in fronto-striatal and posterior corticocortical connections is associated with PD-MCI

    Sex differences in brain atrophy and cognitive impairment in Parkinson's disease patients with and without probable rapid eye movement sleep behavior disorder

    Full text link
    Background: The presence of rapid eye movement sleep behavior disorder (RBD) contributes to increase cognitive impairment and brain atrophy in Parkinson's disease (PD), but the impact of sex is unclear. We aimed to investigate sex differences in cognition and brain atrophy in PD patients with and without probable RBD (pRBD). Methods: Magnetic resonance imaging and cognition data were obtained for 274 participants from the Parkinson's Progression Marker Initiative database: 79 PD with pRBD (PD-pRBD; male/female, 54/25), 126 PD without pRBD (PD-non pRBD; male/female, 73/53), and 69 healthy controls (male/female, 40/29). FreeSurfer was used to obtain volumetric and cortical thickness data. Results: Males showed greater global cortical and subcortical gray matter atrophy than females in the PD-pRBD group. Significant group-by-sex interactions were found in the pallidum. Structures showing a within-group sex effect in the deep gray matter differed, with significant volume reductions for males in one structure in in PD-non pRBD (brainstem), and three in PD-pRBD (caudate, pallidum and brainstem). Significant group-by-sex interactions were found in Montreal Cognitive Assessment (MoCA) and Symbol Digits Modalities Test (SDMT). Males performed worse than females in MoCA, phonemic fluency and SDMT in the PD-pRBD group. Conclusion: Male sex is related to increased cognitive impairment and subcortical atrophy in de novo PD-pRBD. Accordingly, we suggest that sex differences are relevant and should be considered in future clinical and translational research

    Evaluation of machine learning algorithms and structural features for optimal MRI-based diagnostic prediction in psychosis

    Full text link
    A relatively large number of studies have investigated the power of structural magnetic resonance imaging (sMRI) data to discriminate patients with schizophrenia from healthy controls. However, very few of them have also included patients with bipolar disorder, allowing the clinically relevant discrimination between both psychotic diagnostics. To assess the efficacy of sMRI data for diagnostic prediction in psychosis we objectively evaluated the discriminative power of a wide range of commonly used machine learning algorithms (ridge, lasso, elastic net and L0 norm regularized logistic regressions, a support vector classifier, regularized discriminant analysis, random forests and a Gaussian process classifier) on main sMRI features including grey and white matter voxel-based morphometry (VBM), vertex-based cortical thickness and volume, region of interest volumetric measures and wavelet-based morphometry (WBM) maps. All possible combinations of algorithms and data features were considered in pairwise classifications of matched samples of healthy controls (N = 127), patients with schizophrenia (N = 128) and patients with bipolar disorder (N = 128). Results show that the selection of feature type is important, with grey matter VBM (without data reduction) delivering the best diagnostic prediction rates (averaging over classifiers: schizophrenia vs. healthy 75%, bipolar disorder vs. healthy 63% and schizophrenia vs. bipolar disorder 62%) whereas algorithms usually yielded very similar results. Indeed, those grey matter VBM accuracy rates were not even improved by combining all feature types in a single prediction model. Further multi-class classifications considering the three groups simultaneously made evident a lack of predictive power for the bipolar group, probably due to its intermediate anatomical features, located between those observed in healthy controls and those found in patients with schizophrenia. Finally, we provide MRIPredict (https://www.nitrc.org/projects/mripredict/), a free tool for SPM, FSL and R, to easily carry out voxelwise predictions based on VBM images

    Structural and Functional Brain Correlates of Cognitive Impairment in Euthymic Patients with Bipolar Disorder

    Get PDF
    Introduction Cognitive impairment in the euthymic phase is a well-established finding in bipolar disorder. However, its brain structural and/or functional correlates are uncertain. Methods Thirty-three euthymic bipolar patients with preserved memory and executive function and 28 euthymic bipolar patients with significant memory and/or executive impairment, as defined using two test batteries, the Rivermead Behavioural Memory Test (RBMT) and the Behavioural Assessment of the Dysexecutive Syndrome (BADS), plus 28 healthy controls underwent structural MRI using voxel-based morphometry (VBM). Twenty-seven of the cognitively preserved patients, 23 of the cognitively impaired patients and 28 controls also underwent fMRI during performance of the n-back working memory task. Results No clusters of grey or white matter volume difference were found between the two patient groups. During n-back performance, the cognitively impaired patients showed hypoactiva- tion compared to the cognitively preserved patients in a circumscribed region in the right dorsolateral prefrontal cortex. Both patient groups showed failure of de-activation in the medial frontal cortex compared to the healthy controls. Conclusions Cognitive impairment in euthymic bipolar patients appears from this study to be unrelated to structural brain abnormality, but there was some evidence for an association with altered prefrontal function

    The BDNFVal66Met SNP modulates the association between beta-amyloid and hippocampal disconnection in Alzheimer’s disease

    Get PDF
    In Alzheimer’s disease (AD), a single-nucleotide polymorphism in the gene encoding brain-derived neurotrophic factor (BDNFVal66Met) is associated with worse impact of primary AD pathology (beta-amyloid, Aβ) on neurodegeneration and cognitive decline, rendering BDNFVal66Met an important modulating factor of cognitive impairment in AD. However, the effect of BDNFVal66Met on functional networks that may underlie cognitive impairment in AD is poorly understood. Using a cross-validation approach, we first explored in subjects with autosomal dominant AD (ADAD) from the Dominantly Inherited Alzheimer Network (DIAN) the effect of BDNFVal66Met on resting-state fMRI assessed functional networks. In seed-based connectivity analysis of six major large-scale networks, we found a stronger decrease of hippocampus (seed) to medial-frontal connectivity in the BDNFVal66Met carriers compared to BDNFVal homozogytes. BDNFVal66Met was not associated with connectivity in any other networks. Next, we tested whether the finding of more pronounced decrease in hippocampal-medial-frontal connectivity in BDNFVal66Met could be also found in elderly subjects with sporadically occurring Aβ, including a group with subjective cognitive decline (N = 149, FACEHBI study) and a group ranging from preclinical to AD dementia (N = 114, DELCODE study). In both of these independently recruited groups, BDNFVal66Met was associated with a stronger effect of more abnormal Aβ-levels (assessed by biofluid-assay or amyloid-PET) on hippocampal-medial-frontal connectivity decreases, controlled for hippocampus volume and other confounds. Lower hippocampal-medial-frontal connectivity was associated with lower global cognitive performance in the DIAN and DELCODE studies. Together these results suggest that BDNFVal66Met is selectively associated with a higher vulnerability of hippocampus-frontal connectivity to primary AD pathology, resulting in greater AD-related cognitive impairment

    Genome-wide association analysis of dementia and its clinical endophenotypes reveal novel loci associated with Alzheimer's disease and three causality networks : The GR@ACE project

    Get PDF
    Introduction: Large variability among Alzheimer's disease (AD) cases might impact genetic discoveries and complicate dissection of underlying biological pathways. Methods: Genome Research at Fundacio ACE (GR@ACE) is a genome-wide study of dementia and its clinical endophenotypes, defined based on AD's clinical certainty and vascular burden. We assessed the impact of known AD loci across endophenotypes to generate loci categories. We incorporated gene coexpression data and conducted pathway analysis per category. Finally, to evaluate the effect of heterogeneity in genetic studies, GR@ACE series were meta-analyzed with additional genome-wide association study data sets. Results: We classified known AD loci into three categories, which might reflect the disease clinical heterogeneity. Vascular processes were only detected as a causal mechanism in probable AD. The meta-analysis strategy revealed the ANKRD31-rs4704171 and NDUFAF6-rs10098778 and confirmed SCIMP-rs7225151 and CD33-rs3865444. Discussion: The regulation of vasculature is a prominent causal component of probable AD. GR@ACE meta-analysis revealed novel AD genetic signals, strongly driven by the presence of clinical heterogeneity in the AD series
    corecore