1,071 research outputs found

    Phase coexistence of cluster crystals: beyond the Gibbs phase rule

    Full text link
    We report a study of the phase behavior of multiple-occupancy crystals through simulation. We argue that in order to reproduce the equilibrium behavior of such crystals it is essential to treat the number of lattice sites as a constraining thermodynamic variable. The resulting free-energy calculations thus differ considerably from schemes used for single-occupancy lattices. Using our approach, we obtain the phase diagram and the bulk modulus for a generalized exponential model that forms cluster crystals at high densities. We compare the simulation results with existing theoretical predictions. We also identify two types of density fluctuations that can lead to two sound modes and evaluate the corresponding elastic constants.Comment: 4 pages, 3 figure

    Pregnancy Outcomes in Women With a History of Previable, Preterm Prelabor Rupture of Membranes:

    Get PDF
    To characterize subsequent pregnancy outcomes among women with a history of previable, preterm prelabor rupture of membranes (PROM) and assess factors associated with recurrent preterm birth

    Effects of a vitamin B<SUB>12</SUB> deficiency on liver enzymes in the rat

    Get PDF
    This article does not have an abstract

    Overview of the spectrometer optical fiber feed for the Habitable-zone Planet Finder

    Full text link
    The Habitable-zone Planet Finder (HPF) is a highly stabilized fiber fed precision radial velocity (RV) spectrograph working in the Near Infrared (NIR): 810 - 1280 nm . In this paper we present an overview of the preparation of the optical fibers for HPF. The entire fiber train from the telescope focus down to the cryostat is detailed. We also discuss the fiber polishing, splicing and its integration into the instrument using a fused silica puck. HPF was designed to be able to operate in two modes, High Resolution (HR- the only mode mode currently commissioned) and High Efficiency (HE). We discuss these fiber heads and the procedure we adopted to attach the slit on to the HR fibers.Comment: Presented at 2018 SPIE Astronomical Telescopes + Instrumentation, Austin, Texas, USA. 18 pages, 25 figures, and 2 table

    Far-Infrared Blocked Impurity Band Detector Development

    Get PDF
    DRS Sensors & Targeting Systems, supported by detector materials supplier Lawrence Semiconductor Research Laboratory, is developing far-infrared detectors jointly with NASA Langley under the Far-IR Detector Technology Advancement Partnership (FIDTAP). The detectors are intended for spectral characterization of the Earth's energy budget from space. During the first year of this effort we have designed, fabricated, and evaluated pilot Blocked Impurity Band (BIB) detectors in both silicon and germanium, utilizing pre-existing customized detector materials and photolithographic masks. A second-year effort has prepared improved silicon materials, fabricated custom photolithographic masks for detector process, and begun detector processing. We report the characterization results from the pilot detectors and other progress

    Using Machine Learning to Classify Extant Apes and Interpret the Dental Morphology of the Chimpanzee-human Last Common Ancestor

    Get PDF
    Machine learning is a formidable tool for pattern recognition in large datasets. We developed and expanded on these methods, applying machine learning pattern recognition to a problem in paleoanthropology and evolution. For decades, paleontologists have used the chimpanzee as a model for the chimpanzee-human last common ancestor (LCA) because they are our closest living primate relative. Using a large sample of extant and extinct primates, we tested the hypothesis that machine learning methods can accurately classify extant apes based on dental data. We then used this classification tool to observe the affinities between extant apes and Miocene hominoids. We assessed the discrimination accuracy of supervised learning algorithms when tasked with the classification of extant apes (n=175), using three types of data from the postcanine dentition: linear, 2-dimensional, and the morphological output of two genetic patterning mechanisms that are independent of body size: molar module component (MMC) and premolar-molar module (PMM) ratios. We next used the trained algorithms to classify a sample of fossil hominoids (n=95), treated as unknowns. Machine learning classifies extant apes with greater than 92% accuracy with linear and 2-dimensional dental measurements, and greater than 60% accuracy with the MMC and PMM ratios. Miocene hominoids are morphologically most similar in dental size and shape to extant chimpanzees. However, relative dental proportions of Miocene hominoids are more similar to extant gorillas and follow a strong trajectory through evolutionary time. Machine learning is a powerful tool that can discriminate between the dentitions of extant apes with high accuracy and quantitatively compare fossil and extant morphology. Beyond detailing applications of machine learning to vertebrate paleontology, our study highlights the impact of phenotypes of interest and the importance of comparative samples in paleontological studies

    Cancer mortality in IBM Endicott plant workers, 1969–2001: an update on a NY production plant

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In response to concerns expressed by workers at a public meeting, we analyzed the mortality experience of workers who were employed at the IBM plant in Endicott, New York and died between 1969–2001. An epidemiologic feasibility assessment indicated potential worker exposure to several known and suspected carcinogens at this plant.</p> <p>Methods</p> <p>We used the mortality and work history files produced under a court order and used in a previous mortality analysis. Using publicly available data for the state of New York as a standard of comparison, we conducted proportional cancer mortality (PCMR) analysis.</p> <p>Results</p> <p>The results showed significantly increased mortality due to melanoma (PCMR = 367; 95% CI: 119, 856) and lymphoma (PCMR = 220; 95% CI: 101, 419) in males and modestly increased mortality due to kidney cancer (PCMR = 165; 95% CI: 45, 421) and brain cancer (PCMR = 190; 95% CI: 52, 485) in males and breast cancer (PCMR = 126; 95% CI: 34, 321) in females.</p> <p>Conclusion</p> <p>These results are similar to results from a previous IBM mortality study and support the need for a full cohort mortality analysis such as the one being planned by the National Institute for Occupational Safety and Health.</p

    Evidence of strong stabilizing effects on the evolution of boreoeutherian (Mammalia) dental proportions.

    Get PDF
    The dentition is an extremely important organ in mammals with variation in timing and sequence of eruption, crown morphology, and tooth size enabling a range of behavioral, dietary, and functional adaptations across the class. Within this suite of variable mammalian dental phenotypes, relative sizes of teeth reflect variation in the underlying genetic and developmental mechanisms. Two ratios of postcanine tooth lengths capture the relative size of premolars to molars (premolar-molar module, PMM), and among the three molars (molar module component, MMC), and are known to be heritable, independent of body size, and to vary significantly across primates. Here, we explore how these dental traits vary across mammals more broadly, focusing on terrestrial taxa in the clade of Boreoeutheria (Euarchontoglires and Laurasiatheria). We measured the postcanine teeth of N = 1,523 boreoeutherian mammals spanning six orders, 14 families, 36 genera, and 49 species to test hypotheses about associations between dental proportions and phylogenetic relatedness, diet, and life history in mammals. Boreoeutherian postcanine dental proportions sampled in this study carry conserved phylogenetic signal and are not associated with variation in diet. The incorporation of paleontological data provides further evidence that dental proportions may be slower to change than is dietary specialization. These results have implications for our understanding of dental variation and dietary adaptation in mammals
    • …
    corecore