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Using machine learning to classify extant apes and interpret the dental 
morphology of the chimpanzee-human last common ancestor

TESLA A. MONSON1,2,3,4,5*, DAVID W. ARMITAGE6 and LESLEA J. HLUSKO1,2,3,4
1 Department of Integrative Biology, 3040 Valley Life Sciences Building #3140, UC Berkeley, 

Berkeley, CA, USA, 94720; hlusko@berkeley.edu 
2 Human Evolution Research Center, 3101 Valley Life Sciences Building, UC Berkeley, Berkeley CA, USA 94720 

3 Museum of Vertebrate Zoology, 3101 Valley Life Sciences Building, UC Berkeley, Berkeley CA, USA 94720 
4 University of California Museum of Paleontology, 1101 Valley Life Sciences Building, UC Berkeley, 

Berkeley CA, USA 94720 
5 Anthropologisches Institut & Museum, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland 

6 Department of Biological Sciences, 100 Galvin Life Science Center, University of Notre Dame, 
Notre Dame IN, USA 46556; dave.armitage@gmail.com

Machine learning is a formidable tool for pattern recognition in large datasets. We developed and expanded 
on these methods, applying machine learning pattern recognition to a problem in paleoanthropology 
and evolution. For decades, paleontologists have used the chimpanzee as a model for the chimpanzee-
human last common ancestor (LCA) because they are our closest living primate relative. Using a large 
sample of extant and extinct primates, we tested the hypothesis that machine learning methods can 
accurately classify extant apes based on dental data. We then used this classification tool to observe 
the affinities between extant apes and Miocene hominoids. We assessed the discrimination accuracy of 
supervised learning algorithms when tasked with the classification of extant apes (n=175), using three 
types of data from the postcanine dentition: linear, 2-dimensional, and the morphological output of two 
genetic patterning mechanisms that are independent of body size: molar module component (MMC) and 
premolar-molar module (PMM) ratios. We next used the trained algorithms to classify a sample of fossil 
hominoids (n=95), treated as unknowns. Machine learning classifies extant apes with greater than 92% 
accuracy with linear and 2-dimensional dental measurements, and greater than 60% accuracy with the 
MMC and PMM ratios. Miocene hominoids are morphologically most similar in dental size and shape 
to extant chimpanzees. However, relative dental proportions of Miocene hominoids are more similar to 
extant gorillas and follow a strong trajectory through evolutionary time. Machine learning is a powerful 
tool that can discriminate between the dentitions of extant apes with high accuracy and quantitatively 
compare fossil and extant morphology. Beyond detailing applications of machine learning to vertebrate 
paleontology, our study highlights the impact of phenotypes of interest and the importance of compara-
tive samples in paleontological studies.

Keywords: dentition, Miocene, fossils, Hominoidea, primates, supervised learning

INTRODUCTION
Paleontology is an important approach to the study 

of vertebrate evolution that enables quantitative and 
qualitative morphological comparisons between fossil 
and extant taxa (e.g., Szalay and Delson 1979, Patterson 
1981, Hartwig 2002). Over the last several decades, 
machine learning has become an increasingly fine-tuned 
approach to pattern detection and classification (Brown 
et al. 2000, Bishop 2006, Kotsiantis 2007, Michalski 

et al. 2013, Alpaydin 2014, Torkzaban et al. 2015). In 
contrast to automated classification methods, machine 
learning relies on the ability of the model to ‘learn’, im-
proving classification and generalization via quantitative 
repetition and adjustment through a training process 
(Shalev-Shwartz and Ben-David 2014). Within the bio-
logical sciences, these techniques have been applied to 
questions in cancer research (Shipp et al. 2002, Wang et 
al. 2005, Belekar et al. 2015), cognitive sciences (Patel at 
el. 2015, Weakley et al. 2015, Caliskan et al. 2016, Mohan 
et al. 2016), informatics (Vervier et al. 2015), and animal *author for correspondence: tesla.monson@berkeley.edu
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call recognition (Acevedo et al. 2009, Armitage and Ober 
2010, Skowronski and Harris 2016), to name a few (see 
also MacLeod 2007). Application of these methods to 
paleoanthropology is an ideal extension of the approach 
because machine learning provides three advantages: 1, 
allows the use of continuous data; 2, does not assume 
trait independence; and 3, reduces human bias. 

One of the major drawbacks of character coding meth-
ods is that continuous data are rarely used without classi-
fication of the trait into discrete categories, reducing both 
the power of the method and the biological information 
of the phenotype (Mishler 1994, Lee and Bryant 1999). 
A classic example in paleontology is the subjective clas-
sification of continuous traits into categories like small, 
medium, and large (e.g., Ross et al. 1998). Machine learn-
ing eliminates this drawback by allowing the inclusion 
of continuous data in the analyses. Other methods often 
also require the assumption of independence between 
traits, an assumption that has been shown to be false 
with many phenotypes, particularly traits of the denti-
tion, which have been shown to be highly correlated 
with other dental phenotypes as well as with skeletal 
phenotypes like body size (e.g., Hlusko 2004, Hlusko et 
al. 2006, Hlusko 2016, Monson et al. [in press]). In con-
trast, machine learning does not have any assumptions of 
trait independence in the methods, it can process highly 
multivariate data, and it has strong generalizing capa-
bilities (e.g., Schmidhuber 2015). Additionally, machine 
learning reduces human bias by allowing for objective 
classification of taxa independent of a priori taxonomic 
assumptions or grouping aside from the training data 
used in the supervised learning stage of the analysis.

Given how contentious the research debates around 
the evolution and taxonomy of many clades can be, the 
proven efficacy of human-free machine learning can pro-
vide new insight to paleoanthropology. Machine learning 
and supervised learning methods have been applied to a 
series of paleontological questions, including analysis of 
Quaternary fossil pollen (Punyasena et al. 2012), land-
mark utility in classification analyses (Garriga et al. 2008, 
van Bocxlaer and Schultheiß 2010), taphonomic (Arriaza 
and Domínguez-Rodrigo 2016, Domínguez-Rodrigo and 
Baquedano 2018) and taxonomic studies (Polly and Head 
2004). Our work is novel in using a large sample of extant 
and fossils individuals to test evolutionary questions of 
morphological similarity in the charismatic Superfam-
ily Hominoidea using machine learning methods that 
rely on replication and training to increase generalizing 
capabilities. 

We applied machine learning to the problem of selecting 

an appropriate extant homologue for interpretation of 
fossil dental morphology. Despite decades of paleon-
tological excavation, the origin of the hominid lineage 
(Family Hominidae, defined as all taxa on the human 
clade since the split from the chimpanzee clade [White et 
al. 2015]) remains a central and intriguing question. We 
have limited knowledge about the morphology of these 
early hominoids, as there are no known fossils of the 
chimpanzee-human last common ancestor (LCA), very 
few early fossils on the human side, and none older than 
the middle Pleistocene for the chimpanzee (McBrearty 
and Jablonski 2005, Wood and Harrison 2011). Likewise, 
the dental morphologies of currently known hominoids 
do not align with the expectations of ancestral state 
reconstruction (Gómez-Robles et al. 2013). As such, our 
knowledge of the LCA relies on what can be inferred 
from the limited fossil evidence, the Miocene possible 
ancestors, and the evolutionarily distant descendants. 

Chimpanzees (Pan Oken, 1815) have long been used as 
a stand-in for the LCA because they are our closest living 
relative (Goodman 1999). However, with the discovery 
of Ardipithecus White et al., 1995, the applicability of the 
chimpanzee as an analogue for the LCA was seriously 
questioned (Suwa et al. 2009, White et al. 1994, 2009). 
This extinct genus, the best known of the earliest on the 
hominid lineage, has been recovered from sediments 
6–4.4 million years in age (White et al. 2015). This taxon 
bears harbingers of an ancestor that lacked chimpanzee 
features such as knuckle-walking and tall, highly sexu-
ally dimorphic canines—strongly indicating that the LCA 
was distinct from both humans and chimpanzees (White 
et al. 2015). Despite this finding however, the certainty 
of Ardipithecus-derived insight to the LCA remains con-
troversial (Wood and Harrison 2011). Discovery of the 
fossil remains of the LCA will be the ultimate means to 
elucidate its morphology, but in the meantime we bring 
to bear a significant advance in analytical approach.

We assessed the discrimination accuracy of three 
supervised learning algorithms when tasked with the 
classification of extant apes (n=175) using three types 
of data from the postcanine dentition (mandibular 
fourth premolar through third molar): linear (tooth 
crown mesiodistal length); 2-dimensional (tooth crown 
area: mesiodistal length x buccolingual width); and the 
morphological output of genetic patterning mechanisms 
(molar module component, MMC, and premolar-molar 
module, PMM; Hlusko et al. 2016). We next used the 
trained algorithms to classify a sample of fossil speci-
mens, treated as unknowns (n=95). Using this large 
sample of extant and fossil data, we tested the hypothesis 
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that machine learning methods can accurately classify 
extant apes based on dental data. We then used this 
classification method to explore the affinities between 
dentitions of Miocene hominoid fossils and living apes.

MATERIALS AND METHODS
Materials

Our sample consists of dental data (dental length, den-
tal area, and MMC and PMM ratios [Hlusko et al. 2016]) 
from four genera of extant primates (Hominoidea n=175; 
Table 1), as well as data from 13 fossil genera (Hominoi-
dea n=95; Table 2). All mandibular postcanine dental 
lengths were included in the study, with the exception 
of the mandibular third premolar, which is highly sexu-
ally dimorphic due to the role it plays in sharpening the 
canines (Greenfield 1992). We used mesiodistal length 
for tooth length and mesiodistal length by buccolingual 

(pleiotropic) effects with body size (Hlusko et al. 2006), 
MMC and PMM do not (Hlusko et al. 2016). The MMC and 
PMM phenotypes were originally defined by Hlusko et al. 
(2016) and validated using quantitative genetic analyses 
in extant primates. Because both dental area and the 
MMC and PMM ratios rely on calculations of length, all 
three dental data sets were analyzed separately to avoid 
replication of measurements.

The extant hominoid data include modern humans 
(Homo sapiens Linnaeus, 1758), gorillas (Gorilla gorilla 
Savage and Wymann, 1847), both species of chimpanzee 
(Pan troglodytes Elliot, 1913 and Pan paniscus Schwarz, 
1929) and orangutans (Pongo pygmaeus Hoppius, 1763). 
The humans were measured by T.A.M. at the Phoebe A. 
Hearst Museum of Anthropology in Berkeley, CA, accord-
ing to standardized protocols (see Grieco et al. 2013). All 
other extant data were derived from Suwa et al. (2009) 
and references therein. Gorillas differ from chimpanzees 
and orangutans in having skeletal and dental adaptations 
to a predominantly folivorous diet, many of which have 
effects on the size and shape of the postcanine dentition 
(e.g., Kay 1985). Gorillas, chimpanzees, and orangutans 
also differ in the relative proportions of their postcanine 
dentitions (size of the third molar relative to the second 
molar, relative to the first molar; Hlusko et al. 2016).

The fossil data were compiled via comprehensive lit-
erature review and through collaboration with G. Suwa 
and T. White (personal communication). All fossil data 
compiled from the literature are dental metrics taken 
from original specimens (unless otherwise noted in 
original text) according to standardized protocols (e.g., 
White 1977). We recognize that these data were collected 
by many different researchers across many different 
projects, and as such, some variation in method could 
affect the results of this study. However, dental metrics 
are a highly standardized and well-practiced method of 
data collection (e.g., Swindler 1976, 2002, Hillson 2005), 
and we rely on the scientific consistency and accuracy in 
reporting in all references used. The full list of references 
from which fossil data were compiled, as well as speci-
men numbers, sample sizes, and geologic information, 
is available in Table 2.

Dental data comprise the vast majority of all vertebrate 
fossil material, and have been well-studied, with analyses 
of tooth crown length and width linear data being cen-
tral to paleontological research for many decades (e.g., 
Swindler 1976, Wood 1981, Ciochon and Holroyd 1992, 
Bermúdez de Castro et al. 2001, Hlusko et al. 2016). A 
huge body of phenotypic and genotypic information 
can be garnered from the study of teeth (Hillson 2005, 

Table 1. Extant sample size, by species. All data are from Suwa 
et al., (2009) and references therein except for the sample of 
Homo sapiens, which was measured by T.A.M.

Genus Species Sample Size Repository

Gorilla gorilla 41 CMNH

Homo sapiens 42 PAHMA

Pan paniscus 30 MRAC

P. troglodytes 54 CMNH

Pongo pygmaeus 8 CMNH

TOTAL 175

width for dental area.  In addition to the traditional linear 
metrics of dental length and area, we calculated MMC and 
PMM, two newly-defined ratios that reflect the output of 
two genetic mechanisms patterning tooth size variation 
in the primate postcanine dentition (Hlusko et al. 2016). 
MMC is calculated as the mesiodistal length of the third 
molar divided by the mesiodistal length of the first molar 
and is likely related to the inhibitory cascade defined in 
murine dentition (Kavanagh et al. 2007), and PMM is 
calculated as the mesiodistal length of the second molar 
divided by the mesiodistal length of the fourth premolar 
(Hlusko et al. 2016). 

It is increasingly becoming evident that pleiotropic 
effects confound discrimination of fossil and extant taxa 
(Hlusko 2004, 2016, Hlusko et al. 2016, Ungar 2017). 
Whereas linear metrics of tooth size have shared genetic 
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Table 2. Fossil sample size, specimen numbers, and reference information.

Genus Species Specimen Nos.* Sample 
Size

Epoch Reference 
(Geologic)

Reference 
(Data Source)

Afropithecus turkanensis KNM-WK 24300 1 early 
Miocene

Harrison 
2002

Rossie & 
MacLatchy 2013

Ankarapithecus meteai MTA 2125 1 late 
Miocene

Begun 
2002

Begun & Güleç 
1998

Ardipithecus ramidus ARA-1/128
ARA-1/300 
ARA-6/500

3 late 
Miocene 

- early 
Pliocene

White 2002 G. Suwa & 
T.D. White 

(unpublished)

Australopithecus afarensis AL 266-1
AL 288-1i
AL 330-5 
AL 400-1a
AL 417-1a-b
LH-4 
MAK-VP-1/12

7 Pliocene White 2002 White et al. 
2000, G. Suwa 
& T.D. White 

(unpublished)

A. africanus STS-52b
Stw-14 
Stw-384 
Stw-404+407 
Stw-498

5 Plio-
Pleistocene

White 2002 G. Suwa & 
T.D. White 

(unpublished)

A. anamensis KNM-KP 29281 
KNM-KP 29286

2 Pliocene White 2002 Ward et al. 2001

A. bosei KNM-ER 729 
KNM-ER 3230
Peninj 1 

3 Pleistocene White 2002 Wood 1991

A. garhi BOU-17/1 1 Plio-
Pleistocene

White 2002 G. Suwa & 
T.D. White 

(unpublished)

A. robustus SK-23
SK-34
SK-6+100
SK-75+105+826a+843
+846a+SKW-14129a
SK-858+861+883
SK-876
SKW-5
TM-1517b

8 Pleistocene White 2002 G. Suwa & 
T.D. White 

(unpublished)

Griphopithecus alpani MTA 2253 1 early 
Miocene

Begun 
2002

Güleç & Begun 
2003

Homo antecessor ATD6-96 1 Pleistocene Smith 2002 Carbonell et al. 
2005

H. erectus KNM-ER 992 
ZH G1
Sangiran 1b 
Sangiran 22 
Thomas Quarry 1 
Tighenif 1
Tighenif 2
Tighenif 3

8 Pleistocene Smith 2002 Arambourg & 
Hoffstetter 1963, 
Rightmire 1990, 
Kaifu et al. 2005, 

Weidenreich 
1937, Wood 

1991, Wood & 
Van Noten 1986, 
Walker & Leakey 

1993
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Genus Species Specimen Nos.* Sample 
Size

Epoch Reference 
(Geologic)

Reference 
(Data Source)

Homo habilis (sensu 
lato)

KNM-ER 1802
OH 13
OH 16
Omo 75-14

4 Pleistocene Smith 2002 G. Suwa & 
T.D. White 

(unpublished)

H. heidelbergensis Arago XIII
AT-300
I
IV
Mauer 
VI
XII
XV
XVI
XVIII
XXII
XXIII
XXV
XXVII

14 Pleistocene Smith 2002 Bermúdez de 
Castro 1993, 

Gabunia & Vekua 
1995, Howell 

1960, Martinón-
Torres et al. 

2012

H. neanderthalensis Amud mandible I
Ehringsdorf Ehr F
L Hortus V
LaQuina mandible
Spy I 
Spy II
Tabun II
 VB I

8 Pleistocene Smith 2002 Quam et al. 
2001, T.D. White 
(unpublished)

H. sapiens 
(Levant)

Qafzeh 3
Qafzeh 7

2 Pleistocene Smith 2002 T.D. White 
(unpublished)

Kenyapithecus africanus KNM-MJ 5
KNM-TH 28860

2 middle 
Miocene

Ward & 
Duren 2002

Kelley et al. 
2002, Pickford 

1985

Khoratpithecus piriyai RIN 765 1 late 
Miocene

Chaimanee 
et al. 2004

Chaimanee et al. 
2004

Limnopithecus legetet KNM-LG 1475 1 early 
Miocene

Harrison 
2002

Harrison 1981

Micropithecus clarki KNM-CA 380 1 early 
Miocene 
- middle 
Miocene

Harrison 
2002

Harrison 1981

Ouranopithecus macedoniensis RPI-79
RPI-84 
RPI-88
RPI-89

4 late 
Miocene

Begun 
2002

Koufos & de 
Bonis 2006

Proconsul africanus CMH 102
R 1948, 50

2 early 
Miocene

Harrison 
2002

Le Gros Clark & 
Leakey 1951

Table 2 (continued). Fossil sample size, specimen numbers, and reference information.
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of additional information during the training process 
(Tharwat et al. 2017).

Support vector machines (SVM) select linear sepa-
rating hyperplanes between classes by maximizing the 
margin between the closest points belonging to different 
classes. We employed a radial basis function kernel to 
allow the computation of nonlinear feature boundaries 
(Boser et al. 1992). We optimized for SVM classification 
accuracy over a range of misclassification parameters 
spanning seven orders of magnitude (0.25–100,000). 

The random forest is a decision-tree-based technique 
that constructs a large number of decision trees, each 
generated from bootstrapped random samples of the 
data, and generates predictions using a majority vote 
(Breiman 2001). Our random forest was comprised of 
500 trees optimized for classification accuracy over a 
range of the number of random variables selected at each 
bootstrap (mtry parameter). 

Accuracy for all models was assessed using 10-fold 
cross validation, and both mean and adjusted accuracies 
for each model are reported. Adjusted accuracies were 

Swindler 2002), and the importance of the dentition to 
the field of paleontology has been well documented (Un-
gar 2017). As such, use of dental data in this study is not 
only justified but also highly appropriate and informative.

Analytical Methods
We began by assessing the relative accuracies of three 

different supervised learning algorithms on classifying 
teeth to extant genera using their morphological features. 
The models used are linear discriminant function analy-
sis (LDA), support vector machines (SVM), and random 
forest (RF), implemented in the R statistical environment 
3.2.3 (R Core Team 2015). 

LDA is a parametric technique that attempts to predict 
a multiclass categorical outcome using a linear combina-
tion of predictor features (Rao 1948). It assumes features 
are normally distributed, homoscedastic, and represent 
a random sample from the population of interest. Ma-
chine learning LDA differs from traditional supervised 
discriminant function methods in allowing for adjust-
ment of classification criteria based on the inclusion 

Table 2 (continued). Fossil sample size, specimen numbers, and reference information.

Genus Species Specimen Nos.* Sample 
Size

Epoch Reference 
(Geologic)

Reference 
(Data Source)

P. heseloni KNM-RU 1674
KNM-RU 1706
KNM-RU 2087 
KNM-RU 7290

4 early 
Miocene

Harrison 
2002

Pickford et al. 
2009

P. major KNM-LG 452
KNM-SO 396
BNMH-M 16648

3 early 
Miocene

Harrison 
2002

Le Gros Clark 
& Leakey 1951, 
Pickford et al. 

2009
P. nyanzae 1942 mandible 

CMH 4 (KNM-RU 1676) 
KNM-RU 1947
R 1145. '50

4 early 
Miocene

Harrison 
2002

Le Gros Clark 
1952, Le Gros 

Clark & Leakey 
1951, Pickford et 

al. 2009
Rangwapithecus gordoni KNM-KT 31234

KNM-SO 17500
KNM-SO 22228

3 middle 
Miocene

Begun 
2002

Cote et al. 2014, 
Hill et al. 2013

Sivapithecus indicus GSP 15000 1 late 
Miocene

Kelley 2002 Pilbeam 1982

 TOTAL  95    

*AL=Afar Locality, Ethiopia, ARA=Aramis, Ethiopia, AT=Atapuerca, Spain, BOU=Bouri, Ethiopia, CMH=Rusinga, Kenya, GSP=
Geological Survey of Pakistan, Pakistan, LH=Laetoli Hominid, Tanzania, MAK=Makapansgat, South Africa, OH=Olduvai Hominid, 
Tanzania, Omo=Shungura Formation, Ethiopia, RPI=Ravin de la Pluie, Greece, SK=Swartkrans, South Africa, SKW=Swartkrans, 
South Africa, STS=Sterkfontein, South Africa, Stw=Sterkfontein, South Africa, ZH=Zhoukoudian, Beijing, China. 
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calculated as the sensitivity plus specificity, divided by 
two (Zeng et al. 2002, Tzanis et al. 2005). Because the 
scales and ranges of dental features were approximately 
equal, scaling and centering the data did not impact re-
sulting classification accuracies, and so untransformed 
measures were used. The kappa (κ) statistic is a mea-
surement of accuracy adjusted by the probability of 
agreement by chance alone (Cohen 1960). Kappa was 
calculated by comparing machine learning models us-
ing the resamples and summary commands in R (R Core 
Team 2015). We generated a list of the most important 
dental dimensions driving the classification with a vari-
able importance analysis, run using the VarImp function 
in the caret package (Kuhn et al. 2012). Variable impor-
tance analysis is a standard output of the random forest 
model that averages error across variable permutations 
to calculate to what degree each variable influences the 
classification relative to the others, generating a rank 
list of importance, with the most important variable re-
ceiving a value of 100, and the least important variable 
receiving a value of zero (Liaw and Wiener 2002). 

The LDA machine learning classification model classi-
fied extant apes with greatest raw accuracy of the three 
machine learning techniques, and high adjusted accuracy, 
and the output from this classification model was used 
in subsequent analysis of fossil specimens. While a priori 
taxonomic designations were used in the training data 
set, the extant ape species included in this study have 
been well agreed upon in the literature using extensive 
morphological, behavioral, and molecular data (Tuttle 
2014).

We then included a large sample of fossil hominoids 
(n=95, Table 2), spanning 13 genera from Miocene to 
Pleistocene, to our extant sample of apes to test the 
hypothesis that the dentitions of fossil hominoids are 
morphologically more similar to extant chimpanzees 
than other apes. We assessed the agreement of each clas-
sifier on the predicted identities of fossil teeth using the 
following routine: we generated a random seed, which 
is used to partition training and test sets during cross-
validation. We then trained the LDA model on the tooth 
features of extant genera and classified the fossil teeth 
using each classifiers’ most accurate set of parameters. 
We repeated this process 50 times, generating 50 lists of 
genus predictions for fossil teeth per classifier. We then 
took the majority vote of each element of these lists to 
determine the extant genus to which a particular classi-
fier most often assigned each fossil. While this method 
assumes that fossil taxa occupy the same morphospace 
as extant taxa, our goal here was to assess the best 

supported extant homologue for the chimpanzee-human 
last common ancestor.

In order to visualize the relationships between the 
data and better interpret the classification boundaries 
drawn by the machine learning methods, we generated 
a principle components analysis (PCA) for the dental 
phenotypes using the prcomp function in psych (Revelle 
2017). We then plotted all fossils and extant taxa over the 
classifiers’ decision boundaries, first log-transforming, 
scaling, and centering the dental data for both fossil 
and extant genera. We decomposed these transformed 
features into principle components (PC) scores and 
plotted them on the first two PC axes. We then trained 
our classifiers on the PC scores of extant genera using 
the methods described previously. Next, we generated a 
grid of 160,800 regularly-spaced coordinates spanning 
the entire range of PC1 and PC2, and  we classified each 
point on this grid to a particular extant genus. The deci-
sion boundaries for the LDA classifier were approximated 
using a contour line to trace around each region assigned 
to a particular genus. Over these decision regions, we 
plotted both the PC scores of extant genera and fossil 
teeth, with the expectation that the fossils most often 
disagreed-upon would lie at the boundaries of the clas-
sification regions and thus had features intermediate of 
the two (or more) conflicting assigned genera. We also 
computed and plotted 95% confidence intervals for the 
extant taxa using stat_ellipse in ggplot2 (Wickham 2009).

Because there are only two measurements included in 
the comparison of MMC and PMM, we visualized varia-
tion in these ratios with bivariate plots using qplot in 
ggplot (Wickham 2009), excepting the machine learning 
classification output which requires PCA to plot the clas-
sification boundaries.

The R script for machine learning classification of ex-
tant specimens using the three models (LDA, SVM, and 
RF) and the classification of unknowns, here the fossil 
sample, is available for download from the Supplemental 
Material at https://escholarship.org/uc/item/84d1304f.

Institutional Abbreviations
BMNH: British Museum of Natural History, London, 

U.K.; CMNH: Cleveland Museum of Natural History, Cleve-
land, Ohio, U.S.A.; KNM: Kenya National Museum, Nairobi, 
Kenya; MRAC: Musée Royal de l’Afrique Centrale, Tervu-
ren, Belgium; MTA: Maden Tetkik ve Arama Enstitüsü, 
Ankara, Turkey;  PAHMA: Phoebe A. Hearst Museum of 
Anthropology, Berkeley, California, U.S.A.; RIN: Rajabhat 
Institute, Nakhon Ratchasima, Thailand; TM: Transvaal 
Museum, Pretoria, South Africa.

https://escholarship.org/uc/item/84d1304f
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RESULTS
The three supervised learning algorithms classify ex-

tant apes with greater than 95% accuracy with the four 
2-dimensional area measurements, and greater than 92% 
accuracy with the four linear measurements (Table 3), a 
result that relies heavily on the absolute size differences 
between taxa. Adjusted accuracies for classification are 
also greater than 90%. With the MMC and PMM pheno-
types, raw accuracy classification decreases to 60–63%, 
and adjusted accuracy decreases to 55–65%. However, it 
is surprising that the algorithms can classify so well using 
only two data points for each individual, in comparison 
to the four used in the linear or 2-dimensional analyses. 
The reduction in classification accuracy results either 
from the use of only two data points for each individual, 
or more likely, from the similarity in tooth size propor-
tions between chimpanzees and humans once the effects 
of body size are removed, as is the case when using the 
MMC and PMM ratios. When assessing the importance 
of the dental data for classification, variable importance 
analysis identifies dental length of the first molar, area of 
the first molar, and the MMC phenotype, respectively, to 
be the most important traits used in the classification of 
the extant apes (Table 4). This result supports that MMC 
differentiates extant and fossil apes with greater power 
than PMM, and aligns with previous findings of higher 
heritability in MMC relative to PMM (Hlusko et al. 2016).

When comparing fossil ape to extant ape morphology 
using machine learning, the dental metric data tend to be 
most often classified as Pan using dental length and area 
measurements for the majority of the Miocene apes, and 
as Gorilla using the MMC and PMM ratios (Table 5, Fig. 

1; see results for Afropithecus Leakey and Leakey, 1986, 
Griphopithecus Abel, 1902, Kenyapithecus Leakey, 1961, 
Limnopithecus Hopwood, 1933, Micropithecus Fleagle 
and Simons, 1978, Proconsul Hopwood, 1933, Rangwap-
ithecus Andrews, 1974, and Sivapithecus Pilgrim, 1910). 
Likewise, Ouranopithecus macedoniensis de Bonis and 
Melentis, 1978 is exclusively classified as Gorilla using 
the MMC and PMM phenotypes, but the results for dental 

Table 3. Accuracy and Cohen’s kappa of supervised learning techniques determined using 10-fold cross-validation. Abbrevia-
tions: LDA=Linear Discriminate Analysis, RF=Random Forest, SVM=Support Vector Machines, SD=standard deviation.

Model Input Data Accuracy Adjusted Accuracy* Accuracy SD Kappa** Kappa SD

LDA Linear 0.94 0.96 0.07 0.90 0.11
Area 0.97 0.94 0.05 0.95 0.08

 MMC & PMM 0.63 0.59 0.07 0.39 0.11
RF Linear 0.92 0.94 0.07 0.88 0.11

Area 0.96 0.96 0.04 0.94 0.07
 MMC & PMM 0.60 0.55 0.11 0.37 0.15

SVM Linear 0.94 0.92 0.08 0.90 0.12
Area 0.96 0.96 0.07 0.94 0.10

 MMC & PMM 0.61 0.65 0.08 0.29 0.14

*Adjusted accuracy was calculated as (selectivity + sensitivity)/2 (Tzanis et al. 2005). 
**The kappa (κ) statistic is a measurement of accuracy adjusted by the probability of agreement by chance alone. κ > 0.75 
indicates substantial agreement.

Table 4. Variable importance of the dental traits in classifying 
extant apes. Abbreviations: M=molar, P=premolar, L=length, 
A=area, 2-D=two-dimensional, GP Phenotypes=genetic pattern-
ing phenotypes (MMC and PMM). All dental data are from man-
dibular dentitions.

Dental Data Variable 
Importance

Linear Metrics

M1L 100.00
M2L 34.659
M3L 2.278
P4L 0.00

2-D Metrics

M1A 100.00
M2A 39.09
M3A 25.26
P4A 0.00

GP Phenotypes

MMC 100.00
PMM 0.00
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Table 5. Predictions of the machine learning classification under linear discriminant analysis. Abbreviations: LDA=linear 
discriminant analysis, Pred.=prediction, MMC=molar module component, PMM=premolar-molar module. Cells containing extant 
classification predictions are color-coded: blue=Pan (chimpanzee), green=Gorilla (gorilla), pink=Homo (human), yellow=Pongo 
(orangutan), white=NA (not available).

Fossil Specimen ID Species LDA Pred. Linear LDA Pred. Area LDA Pred. 
MMC & PMM

KNM-WK 24300 Af. turkanensis Pan Pan Gorilla
MTA 2125 An. meteai Gorilla Gorilla Gorilla
ARA-1/128 Ar. ramidus Pan Pan Gorilla
ARA-1/300 Ar. ramidus Pan Pan Gorilla
ARA-6/500 Ar. ramidus Pan Pan Gorilla
AL 266-1 Au. afarensis Pongo Gorilla Gorilla
AL 288-1i Au. afarensis Homo Pan Gorilla
AL 400-1a Au. afarensis Gorilla Gorilla Gorilla
AL 417-1a, b Au. afarensis Homo Homo Gorilla
AL 330-5 Au. afarensis Homo Homo Gorilla
LH-4 Au. afarensis Gorilla Gorilla Gorilla
MAK-VP-1/12 Au. afarensis Gorilla Gorilla Gorilla
STS-52b Au. afarensis Pongo Pongo Pan
Stw-14 Au. afarensis Gorilla NA Gorilla
Stw-384 Au. afarensis Gorilla Gorilla Gorilla
Stw-404+407 Au. afarensis Gorilla Gorilla Gorilla
Stw-498 Au. afarensis Gorilla Gorilla Gorilla
KNM-KP 29281 Au. anamensis Homo Homo Gorilla
KNM-KP 29286 Au. anamensis Pan Gorilla Gorilla
KNM-ER 729 Au. boisei Gorilla Gorilla Gorilla
KNM-ER 3230 Au. boisei Gorilla Gorilla Gorilla
Peninj 1 Au. boisei Gorilla Gorilla Gorilla
BOU-17/1 Au. garhi Gorilla NA Gorilla
SK-23 Au. robustus Gorilla Pongo Gorilla
SK-34 Au. robustus Gorilla Gorilla Gorilla

SK-6 + 100 Au. robustus Gorilla Gorilla Gorilla

SK-75+105+826a+843 + 
846a+SKW-14129a Au. robustus Gorilla Gorilla Gorilla

SK-858+86+ 883 Au. robustus Gorilla Gorilla Gorilla

SK-876 Au. robustus Gorilla NA Gorilla
SKW-5 Au. robustus Gorilla Gorilla Gorilla
TM-1517b Au. robustus Pongo Pongo Gorilla
MTA 2253 Gr. alpani Pan Pan Gorilla
ATD6-96 H. antecessor Pan Pan Pan
KNM-ER 992 H. erectus Homo Pan Pan
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Table 5 (continued). Predictions of the machine learning classification under linear discriminant analysis. Abbreviations: 
LDA=linear discriminant analysis, Pred.=prediction, MMC=molar module component, PMM=premolar-molar module. Cells 
containing extant classification predictions are color-coded: blue=Pan (chimpanzee), green=Gorilla (gorilla), pink=Homo 
(human), yellow=Pongo (orangutan), white=NA (not available).

Fossil Specimen ID Species LDA Pred. Linear LDA Pred. Area LDA Pred. 
MMC & PMM

ZH G1 H. erectus Homo Homo Pan
Sangiran 1b H. erectus Homo Homo Gorilla
Sangiran 22 H. erectus Pan Homo Pan
Thomas Quarry 1 H. erectus Homo Homo Pan
Tighenif 1 H. erectus Homo Homo Pan
Tighenif 2 H. erectus Homo Homo Pan
Tighenif 3 H. erectus Homo Homo Pan
KNM-ER 1802 H. habilis (sensu lato) Gorilla Gorilla Gorilla
OH 13 H. habilis (sensu lato) Homo Homo Gorilla
OH 16 H. habilis (sensu lato) Gorilla Gorilla Gorilla
Omo 75-14 H. habilis (sensu lato) Gorilla Gorilla Pan
Arago XIII H. heidelbergensis Homo Pongo Pan
AT-300 H. heidelbergensis Pan Pan Gorilla
I H. heidelbergensis Pan Homo Pan
IV H. heidelbergensis Pan Homo Pan
Mauer H. heidelbergensis Pan Homo Gorilla
VI H. heidelbergensis Pan Pan Pan
XII H. heidelbergensis Pan Pan Gorilla
XV H. heidelbergensis Homo Pan Pan
XVI H. heidelbergensis Homo Pan Pan
XVIII H. heidelbergensis Homo Pan Pan
XXII H. heidelbergensis Homo Homo Gorilla
XXIII H. heidelbergensis Pan Homo Gorilla
XXV H. heidelbergensis Pan Homo Pan
XXVII H. heidelbergensis Pan Homo Gorilla
Amud mandible I H. neanderthalensis Pan NA Pan
Ehringsdorf Ehr F H. neanderthalensis Homo NA Pan
L Hortus V H. neanderthalensis Pan NA Pan
LaQuina mandible H. neanderthalensis Pan NA Pan
Spy I H. neanderthalensis Pan NA Pan
Spy II H. neanderthalensis Homo NA Pan
Tabun II H. neanderthalensis Homo NA Pan
VB 1 H. neanderthalensis Homo Homo Pan
Qafzeh 3 H. sapiens (Levant) Homo NA Pan
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Table 5 (continued). Predictions of the machine learning classification under linear discriminant analysis. Abbreviations: 
LDA=linear discriminant analysis, Pred.=prediction, MMC=molar module component, PMM=premolar-molar module. Cells 
containing extant classification predictions are color-coded: blue=Pan (chimpanzee), green=Gorilla (gorilla), pink=Homo 
(human), yellow=Pongo (orangutan), white=NA (not available).

Fossil Specimen ID Species LDA Pred. Linear LDA Pred. Area LDA Pred. 
MMC & PMM

Qafzeh 7 H. sapiens (Levant) Homo NA Pan

KNM-MJ 5 Ke. africanus Pan Pan Gorilla
KNM-TH 28860 Ke. africanus Pan Pan Gorilla
RIN 765 Kh. piriyai Gorilla NA Gorilla
KNM-LG 1475 L. legetet Pan Pan Gorilla
KNM-CA 380 M. clarki Pan Pan Pan
RPI-79 Ou. macedoniensis Gorilla Gorilla Gorilla
RPI-84 Ou. macedoniensis Pan Pan Gorilla
RPI-88 Ou. macedoniensis Homo Homo Gorilla
RPI-89 Ou. macedoniensis Gorilla NA Gorilla
CMH 102 Pr. africanus Pan Pan Gorilla
R 1948, 50 Pr. africanus Pan Pan Gorilla
KNM-RU 1674 Pr. heseloni Pan Pan Gorilla
KNM-RU 1706 Pr. heseloni Pan Pan Gorilla
KNM-RU 2087 Pr. heseloni Pan Pan Gorilla
KNM-RU 7290 Pr. heseloni Pan Pan Gorilla
KNM-LG 452 Pr. major Pan Pan Gorilla
KNM-SO 396 Pr. major Gorilla Pan Gorilla
BNMH-M 16648 Pr. major Gorilla Gorilla Gorilla

1942 mandible Pr. nyanzae Pan Pan Gorilla

CMH 4 (KNM-RU 1676) Pr. nyanzae Pan Pan Gorilla
KNM-RU 1947 Pr. nyanzae Pan Pan Gorilla
R 1145. '50 Pr. nyanzae Pan Pan Gorilla
KNM-KT 31234 R. gordoni Pan Pan Gorilla
KNM-SO 17500 R. gordoni Pan Pan Gorilla
KNM-SO 22228 R. gordoni Pan Pan Gorilla
GSP 15000 S. indicus Pan Pan Gorilla

length and dental area are majority Homo.
Uniquely among the Miocene fossil sample, Micropithecus 

clarki Fleagle and Simons, 1978 is classified as Pan with 
100% agreement using dental length, area, and the MMC 
and PMM ratios. On the opposite end of the spectrum, 
Ankarapithecus meteai Ozansoy, 1957 is classified as 
Gorilla with 100% agreement using dental length, area, 
and the MMC and PMM ratios. Khoratpithecus piriyai 
Chaimanee et al., 2004 is also classified as Gorilla with 

100% agreement using dental length, and the MMC and 
PMM phenotypes (dental areas are not available for this 
taxon). 

Like many of the fossil specimens, Ardipithecus is 
classified as Pan using dental length, and as Gorilla using 
the MMC and PMM ratios. In contrast, Australopithecus 
robustus Broom, 1938 is almost exclusively classified as 
Gorilla by the machine learning LDA model (Fig. 1). The 
other Australopithecus specimens have less agreement 
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between data sets. Many of the Au. afarensis Johanson 
and White, 1979 specimens are classified exclusively as 
Gorilla using all three data types, while some of them are 
classified as Homo using dental length and dental area, 
and as Gorilla using the MMC and PMM phenotypes. All 
three of the Australopithecus bosei Leakey, 1959 speci-
mens are exclusively classified as Gorilla.

Interestingly, there is good agreement on the classi-
fication of Homo habilis (sensu lato) Leakey et al., 1964 
as Gorilla using all of the phenotypes except for OH-13 
which is classified as Homo using dental length and dental 
area. In contrast, Homo antecessor Bermúdez de Castro 
et al., 1997 is classified as Pan with 100% agreement 
using dental length, area, and the MMC and PMM ratios. 
There is more variation in the other species of Homo 
although many of the individuals are classified as Pan 
using dental length and area. Homo erectus Mayr, 1951 
is largely classified as Homo using dental length and as 
Pan with the MMC and PMM ratios. Homo heidelbergensis 
Schoetensack, 1908 is jointly classified as Pan and Homo 
using dental length and area, but the sample is classi-
fied as Pan, Gorilla, or Pongo using the MMC and PMM 
phenotypes. Homo neanderthalensis King, 1864 is almost 
exclusively classified as Pan using dental length, but is 
jointly classified as Pan and Homo using MMC and PMM. 
Overall, many of the H. erectus, H. heidelbergensis, and H. 
neanderthalensis specimens are classified as Homo using 
dental length, emphasizing the overall similarity of tooth 
size between these taxa and modern humans. However, 
the dental proportions of fossil Homo fall at the intersec-
tion of modern apes (Homo, Gorilla, and Pan) and tend 
to be more variably classified by the machine learning 
algorithm. Classifications of each specimen using dental 
length, dental area, and the MMC and PMM ratios are fully 
detailed in Table 5. 

Because machine learning is not static, multiple itera-
tions of the method will result in slight changes of classi-
fication. The training sample also plays an important role 
in the method, and a larger, or different, extant sample 
would likely have some impact on the classification analy-
sis of the fossil taxa. As we note here, the phenotypes used 
in the method also dramatically influence the results of 
the classification.

DISCUSSION
Machine learning is highly successful at classifying 

extant apes based on dental linear and 2-dimensional 
metrics, correctly classifying unknown samples with 
greater than 92% accuracy. Applying these methods to 
a sample of unknown fossils can provide insight about 
similarities and differences between extant and fossil 
morphology but relies heavily on the phenotypes of 
interest and the extant training sample. Different phe-
notypes result in substantially different classification by 
machine learning methods, emphasizing the importance 
of choosing phenotypes that accurately reflect the bio-
logical mechanisms relevant and appropriate for testing 
your hypothesis.

When using linear and 2-dimensional dental metrics 
to compare and classify fossil hominoids according to 
extant variation, machine learning classifies many of the 
Miocene fossils as chimpanzees (e.g., specimens of Rang-
wapithecus, Proconsul, Limnopithecus, Micropithecus, and 
Griphopithecus), indicating that many fossil hominoids 
have teeth that are most similar in size and area to extant 
chimpanzees. This is exactly as we would expect given 
the long-appreciated morphological similarity of these 
taxa (Gregory 1921). The algorithms using linear denti-
tion metrics classify many of the Miocene apes as Pan 
over Gorilla because they sit just within the classification 

Figure 1. Series of PCA with machine learning classification boundaries (LDA) overlaid, using linear dental metrics (A), 2-dimen-
sional dental metrics (B), and MMC and PMM ratios (C). Extant ape genera are marked by circles. Fossil taxa are marked by generic 
abbreviations. Note how the majority of taxa are subsumed by the Gorilla classification in panel C.
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boundary of Pan set by the supervised learning model 
(Fig. 1, Table 5), but it is difficult to confidently argue that 
the Miocene taxa are morphologically more similar to 
Pan than Gorilla because they are practically equidistant 
in PC space despite the classification boundary (Figs. 1, 
2A). This same result is also seen for the 2-dimensional 
data (Fig. 2B, Table 5). 

Use of the MMC and PMM phenotypes provides a dif-
ferent result (Fig. 2C). Miocene apes are more similar 

to extant gorillas in dental proportions and are almost 
exclusively classified as Gorilla (Table 5). We also quali-
tatively document a strong trajectory through bivariate 
space that correlates with evolutionary time, from Mio-
cene apes to Plio-Pleistocene hominids to extant apes, 
including humans (Fig. 3). This trend captures a linear 
decrease in MMC from Miocene to present which char-
acterizes almost all taxa sampled, further emphasizing 
the relatively greater importance of MMC compared to 

Figure 3. Bivariate plot of MMC and PMM ratios. All taxa are represented by the species average. Circles=extant taxa, 
diamonds=fossil Homo, triangles=Plio-Pleistocene fossil taxa, crossed squares=Miocene fossil taxa. Difference in shape size is an 
artifact of R. See Figure 2 for species legend. Blue shading=Miocene, green shading=Pliocene, yellow shading=Pleistocene. Note 
the linearly decreasing values of MMC through time. Outliers to the pattern include Limnopithecus, Rangwapithecus, Micropithecus, 
Homo habilis, and Gorilla. Sample MMC ratios with figurative tooth proportions (M3, M2, M1) are overlaid on the plot. 

Figure 2. The distribution of fossil and extant taxa in multidimensional space. Circles=extant taxa, diamonds=fossil Homo, 
triangles=Plio-Pleistocene fossil taxa, crossed square=Miocene fossil taxa. Ellipses represent 95% confidence intervals. PCs com-
puted using specific taxonomy are slightly different than PCs computed using generic taxonomy (Fig. 1). Equations for calculating 
MMC and PMM ratios are detailed in the figure next to a diagram of generalized mandibular primate dentition. M3 is mandibular 
third molar, M2 is mandibular second molar, M1 is mandibular first molar, P4 is mandibular fourth premolar. A. PCA comparing den-
tal length across the fossil and extant samples. PC1 comprises 93.2% of the variation, and PC2 comprises 3.8% of the variation. B. 
PCA comparing dental area across the fossil and extant samples. PC1 comprises 95.4% of the variation, and PC2 comprises 2.6% 
of the variation. Note how the Miocene taxa are distinct from the Plio-Pleistocene and extant taxa in (A )and (B). C. Bivariate plot 
comparing the MMC and PMM ratios across the fossil and extant samples. 
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PMM in characterizing primate variation (Fig. 3). Of the 
extant apes, gorillas retain more ancestral MMC and PMM 
values, as evidenced by their morphological similarity to 
Miocene taxa (Figs. 2C, 3). Pliocene taxa (Australopithe-
cus), are also similar to gorillas in dental proportions 
(Fig. 3). Fossil taxa do not have PMM and MMC values 
comparable to modern humans until genus Homo in the 
Pleistocene (Fig. 3). Chimpanzees and humans, as well as 
orangutans (Pongo), are morphologically derived relative 
to Miocene taxa, and this is why the machine learning 
methods fail to classify fossil taxa as chimpanzee using 
the MMC and PMM ratios. 

Chimpanzees and humans shared a last common an-
cestor approximately five to nine million years ago, in the 
Miocene (Goodman 1999, Raaum et al. 2005, Steiper and 
Young 2006, Langergraber et al. 2012). Postcanine tooth 
size proportions of fossil hominoids in our sample (e.g., 
Afropithecus, Kenyapithecus, Proconsul) are more similar 
to those of extant gorillas than chimpanzees or humans, 
as are the dentitions of many Pliocene taxa, suggesting 
that the last common ancestor of chimpanzees and hu-
mans likely also had dental proportions more similar to 
gorillas. The fossil evidence, interpreted through machine 
learning classification methods, suggests that humans 
and chimpanzees likely converged in their MMC and PMM 
values, evolving independently from a dental morphology 
that was much more similar to living gorillas. 

The similarity between extant Homo and Pan postca-
nine dentitions has long been interpreted as a result of 
shared common ancestry (Johanson 1973, Begun 1994, 
2004, Lucas et al. 2008). However, our machine learning 
approach reveals that the relative sizes of the postca-
nine teeth of putative LCAs were much more like extant 
gorillas, suggesting that similarities in postcanine tooth 
proportions in extant Pan and Homo postcanine denti-
tions are the result of parallel evolution. 

Gorillas have evolved many tooth crown features spe-
cialized for folivory (Glowcka et al. 2016), but retain a 
more primitive pattern of dental proportions. Given that 
the divergence of humans and chimpanzees occurred in 
the late Miocene, and that Miocene apes are much more 
similar to Gorilla in dental proportions, we assert that 
gorillas are the more appropriate extant model for the Af-
rican ape LCA in terms of the relative sizes of the postca-
nine teeth. This similarity in dental proportions likely has 
implications for the interpretation of dietary adaptation 
and possibly phylogenetic relationships in Miocene apes, 
including the chimpanzee-human last common ancestor. 
Overall, our results also further highlight the well-known 
dramatic reduction in morphological variation when 

Miocene apes are compared to extant apes. 
Machine learning is a powerful tool that can accurately 

classify extant species based on dental metrics as well as 
be used to explore evolutionary hypotheses that rely on 
interpretations of fossil morphology. However, machine 
learning still depends heavily on human decisions, and 
we emphasize here the importance of carefully consider-
ing which phenotypes to use as input based on which will 
best capture the underlying biological mechanisms being 
explored, and the importance of considering appropriate 
comparative samples.
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